Space

July 25, 2012

NASA’s Space Launch System passes major agency review, moves to preliminary design

An artist rendering of the various configurations of NASA’s Space Launch System (SLS), managed by the Marshall Space Flight Center in Huntsville, Ala. The flexible configuration, sharing the same basic core-stage, allows for different crew and cargo flights as needed, promoting efficiency, time and cost savings. The SLS enables exploration missions beyond low-Earth orbit and support travel to asteroids, Mars and other destinations within our solar system.

The rocket that will launch humans farther into space than ever before passed a major NASA review July 25.

The Space Launch System Program completed a combined System Requirements Review and System Definition Review, which set requirements of the overall launch vehicle system. SLS now moves ahead to its preliminary design phase.

The SLS will launch NASA’s Orion spacecraft and other payloads, and provide an entirely new capability for human exploration beyond low Earth orbit.

These NASA reviews set technical, performance, cost and schedule requirements to provide on-time development of the heavy-lift rocket. As part of the process, an independent review board comprised of technical experts from across NASA evaluated SLS Program documents describing vehicle specifications, budget and schedule. The board confirmed SLS is ready to move from concept development to preliminary design.

An expanded view of an artist rendering of the 70-metric-ton configuration of NASA’s Space Launch System (SLS), managed by the Marshall Space Flight Center in Huntsville, Ala. Launching astronauts on board the Orion Multi-Purpose Crew Vehicle, this vehicle will enable humans to explore our solar system farther than ever before, supporting travel to asteroids, the moon, Mars and other deep space destinations. NASA plans to launch an uncrewed test flight of this configuration in 2017.

“This new heavy-lift launch vehicle will make it possible for explorers to reach beyond our current limits, to nearby asteroids, Mars and its moons, and to destinations even farther across our solar system,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. “The in-depth assessment confirmed the basic vehicle concepts of the SLS, allowing the team to move forward and start more detailed engineering design.”

The reviews also confirmed the SLS system architecture and integration with the Orion spacecraft, managed by NASA’s Johnson Space Center in Houston, and the Ground Systems Development and Operations Program, which manage the operations and launch facilities at NASA’s Kennedy Space Center in Florida.

“This is a pivotal moment for this program and for NASA,” said SLS Program Manager Todd May. “This has been a whirlwind experience from a design standpoint. Reaching this key development point in such a short period of time, while following the strict protocol and design standards set by NASA for human spaceflight is a testament to the team’s commitment to delivering the nation’s next heavy-lift launch vehicle.”

An expanded view of an artist rendering of the 130-metric-ton configuration of NASA’s Space Launch System (SLS), managed by the Marshall Space Flight Center in Huntsville, Ala., shows the many different elements of the rocket design. Used primarily to launch heavy cargo, this two-stage vehicle will be the largest rocket ever built and will enable exploration missions beyond low-Earth orbit, supporting travel to asteroids, Mars and other deep space destinations.

SLS reached this major milestone less than 10 months after the program’s inception. The combination of the two assessments represents a fundamentally different way of conducting NASA program reviews. The SLS team is streamlining processes to provide the nation with a safe, affordable and sustainable heavy-lift launch vehicle capability. The next major program milestone is the preliminary design review, targeted for late next year.

The first test flight of NASA’s Space Launch System, which will feature a configuration for a 70-metric-ton (77-ton) lift capacity, is scheduled for 2017. As SLS evolves, a three-stage launch vehicle configuration will provide a lift capability of 130 metric tons (143 tons) to enable missions beyond low Earth orbit and support deep space exploration.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the SLS program. Across the country NASA and its industry partners continue to make progress on SLS hardware that will be integrated into the final design. The RS-25 core stage and J-2X upper-stage rocket engine in development by Pratt & Whitney Rocketdyne of Canoga Park, Calif., for the future two-stage SLS, will be tested at NASA’s Stennis Space Center in Mississippi. The prime contractor for the five-segment solid rocket boosters, ATK of Brigham City, Utah, has begun processing its first SLS boosters in preparation for an initial qualification test next year, ahead of their use for the first two exploration missions. The Boeing Co. in Huntsville is designing the SLS core stage, to be built at NASA’s Michoud Assembly Facility in New Orleans and tested at Stennis before being shipped to Kennedy.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s future - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>