Tech

August 2, 2012

2012 NASA Advanced Technology Concepts selected for study

NASA’s Space Technology Program is turning science fiction into science fact. The program has selected 28 proposals for study under the NASA Innovative Advanced Concepts Program.

Eighteen of these advanced concept proposals were categorized as Phase I and 10 as Phase II. They were selected based on their potential to transform future aerospace missions, enable new capabilities, or significantly alter and improve current approaches to launching, building and operating aerospace systems.

The selected proposals include a broad range of imaginative concepts, including a submarine glider to explore the ice-covered ocean of Europa, an air purification system with no moving parts, and a system that could use in situ lunar regolith to autonomously build concrete structures on the moon.

“These selections represent the best and most creative new ideas for future technologies that have the potential to radically improve how NASA missions explore new frontiers,” said Michael Gazarik, director of NASA’s Space Technology Program at the agency’s headquarters in Washington. “Through the NASA Innovative Advanced Concepts program, NASA is taking the long-term view of technological investment and the advancement that is essential for accomplishing our missions. We are inventing the ways in which next-generation aircraft and spacecraft will change the world and inspiring Americans to take bold steps.”

NIAC Phase I awards of approximately $100,000 for one year enable proposers to explore basic feasibility and properties of a potential breakthrough concept. NIAC Phase II awards of as much as $500,000 for two years help further develop the most successful Phase I concepts and analyze their potential to enable new or radically improved future NASA missions and potential applications with benefits for industry and society.

“We’re excited to be launching Phase II, allowing the 2012 NIAC portfolio to feature an exciting combination of new ideas and continued development of last year’s Phase I concepts,” said Jay Falker, NIAC program executive at NASA Headquarters.

NASA solicited visionary, long-term concepts for technological maturation based on their potential value to NASA’s future space missions and operational needs. These projects were chosen through a peer-review process that evaluated their innovation and how technically viable they are. All are very early in development – 10 years or longer from use on a mission.

NASA’s early investment and partnership with creative scientists, engineers, and citizen inventors from across the nation will provide technological dividends and help maintain America’s leadership in the global technology economy.

The portfolio of diverse and innovative ideas selected for NIAC awards represent multiple technology areas, including power, propulsion, structures, and avionics, as identified in NASA’s Space Technology Roadmaps. The roadmaps provide technology paths needed to meet NASA’s strategic goals.

NIAC is part of NASA’s Space Technology Program, which is innovating, developing, testing, and flying hardware for use in NASA’s future missions. These competitively-awarded projects are creating new technological solutions for NASA and our nation’s future.

For a complete list of the selected proposals and more information about the NIAC, visit http://www.nasa.gov/niac.




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>