Space

August 6, 2012

Aerojet Propulsion helps land Mars Science Laboratory


 
Aerojet, a GenCorp company, announced Aug. 3 that its monopropellant hydrazine thrusters helped guide NASA’s Mars Science Laboratory to a successful landing on the red planet at 10:32 p.m., PDT, Aug. 5.

The much-anticipated landing delivered the rover Curiosity to the Martian surface.

Aerojet engines assisted with entry, descent and landing. The company’s thrusters also provided attitude control and trajectory correction maneuvers during the MSL’s transit to Mars.

MSL carried eight Aerojet MR-111C 1.0 lbf thrusters, eight Aerojet MR-107U 68 lbf thrusters and eight Aerojet MR-80B 800-lbf thrusters with a throttleable thrust range of >100:1. The 68 lbf and the 800 lbf thrusters supported the actual landing.

In June 2012, NASA reduced the MSL target landing area to about 12 miles long and four miles wide (20 kilometers by seven kilometers) on a site near the northern flank of Mount Sharp, inside Gale Crater on Mars. The landing timeline began with guided entry in the upper atmosphere of Mars and concluded with the sky crane drop-off of Curiosity and the remaining spacecraft fly-away.

This was the most complicated landing ever attempted on a planet.

“Aerojet joins NASA and the Jet Propulsion Laboratory in congratulating the MSL team on tonight’s historic landing,” said Julie Van Kleeck, Aerojet vice president of Space and Launch Systems. “Aerojet thrusters brought Viking 1 and 2 and the Phoenix Mars Lander to safe arrivals on Mars and we were confident that our MSL thrusters would once again help deliver success.”

The three different types of thrusters aboard the MSL were designed and manufactured at Aerojet’s Redmond, Wash. facility under contract to the Jet Propulsion Laboratory. The 800 lbf throttling engines were tested at Aerojet’s Sacramento facility.

NASA’s Jet Propulsion Laboratory in Pasadena, Calif. has trimmed the distance Curiosity will drive after landing by almost half, allowing the rover to reach the mountain months earlier. NASA determined it was possible to adjust landing plans because of increased confidence in the precision landing technology aboard the MSL spacecraft. Rock layers located in the mountain are the prime location for rover research.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 
NASA photograph

NASA announces new opportunities for public participation in asteroid grand challenge

NASA photograph Team NOVA Took the Winning Hackathon Prize.   Ten new projects are providing opportunities for the public to participate in NASA’s Asteroid Grand Challenge, which accelerates the agency’s astero...
 
 
XCOR Aerospace photograph by Mike Massee

XCOR Aerospace announces latest milestone in ULA program

XCOR Aerospace photograph by Mike Massee The XCOR-ULA XR-5H25 LOX-Hydrogen Rocket Engine, fed by XCOR’s proprietary rocket propellant piston pump technology. MOJAVE, Calif. XCOR Aerospace announced Nov. 20 it has complete...
 

 

New crew arrives at space station to continue scientific research

Three new crew members representing the United States, Russia and Italy are at the International Space Station. The Soyuz TMA-15M vehicle docked to the International Space Station at 9:48 p.m., EST, above the Pacific Ocean, approaching the coast of Ecuador. Terry Virts of NASA, Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos)...
 
 
NASA image by Eric Stern

NASA announces early stage innovations space tech research grants

NASA image by Eric Stern Advanced thermal protection materials modeling using the Direct Simulation Monte Carlo (DSMC) method simulates the flow through porous TPS materials. Research into these sorts of advanced technologies e...
 
 

NASA awards launch services contract for Ionospheric Connection Explorer

NASA has selected Orbital Sciences Corporation of Dulles, Va., to provide launch services for the Ionospheric Connection Explorer mission. ICON is targeted to launch in June 2017 from the Reagan Test Site on Kwajalein Atoll in the Republic of the Marshall Islands aboard a Pegasus XL launch vehicle from Orbital’s “Stargazer” L-1011 aircraft. The total...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>