Tech

August 6, 2012

NASA investigates proton radiation effects on cells

A team of researchers at NASA’s Johnson Space Center in Houston and Lawrence Berkeley National Laboratory in Berkeley, Calif., has found radiation from protons could further enhance a process that occurs during tumor progression.

This information may help lead to better methods to protect astronauts from the harmful effects of radiation in space, as well as help cancer researchers on Earth better understand the effects of radiation treatment on the human body.

NASA is particularly interested in this research because protons, which are charged subatomic particles, are the main source of space radiation astronauts receive during spaceflights. The study was part of NASA’s ongoing effort to learn how to mitigate the effects of radiation during long-duration missions to destinations beyond low Earth orbit, such as asteroids and Mars.

“Our paper makes new discoveries on the potential risks from low doses of protons that occur outside of the tumor during radiation therapy, and to all tissues for astronauts exposed to space radiation,” said Francis A. Cucinotta, chief scientist for the Human Research Program Space Radiation Program Element at Johnson and one of the authors of the paper.

The objective of the researchers was to study the biological effects of low-energy protons on epithelial cells (membranous tissues found throughout the body) and the protons’ propensity to enhance a process that occurs during tumor progression. This process is called epithelial-mesenchymal transition, which has been associated with cancer progression. EMT also has been linked to radiation-induced fibrosis, one of the most common late effects of radiotherapy.

Notably, the study revealed protons alone can induce EMT-associated changes in normal human epithelial cells. Although the total body dose received in space is moderately low compared to what is received in radiotherapy, this study reveals that low doses of protons still may prompt EMT and result in potentially detrimental effects.

These studies were conducted at Johnson and at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, Upton, N.Y.

Results of the study were published as “Protons Sensitize Epithelial Cells to Mesenchymal Transition” in the July 23 issue of the journal PLoS ONE.

 

To view the paper on the Internet, visit http://dx.plos.org/10.1371/journal.pone.0041249.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Tom Tschida

NASA Armstrong leads team to test effects of volcanic ash on aircraft engines

NASA photograph by Tom Tschida Volcanic ash is sprayed into one of the F117 engines of a C-17 during the final phase of the Vehicle Integrated Propulsion Research (VIPR) project July 9 at Edwards. The VIPR team, comprised of NA...
 
 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 

 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 
 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAĆ­s Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>