Space

August 6, 2012

NASA lands car-size rover beside Martian mountain

NASA’s most advanced Mars rover Curiosity has landed on the Red Planet.

The one-ton rover, hanging by ropes from a rocket backpack, touched down onto Mars Aug. 5 to end a 36-week flight and begin a two-year investigation.

The Mars Science Laboratory spacecraft that carried Curiosity succeeded in every step of the most complex landing ever attempted on Mars, including the final severing of the bridle cords and flyaway maneuver of the rocket backpack.

“Today, the wheels of Curiosity have begun to blaze the trail for human footprints on Mars. Curiosity, the most sophisticated rover ever built, is now on the surface of the Red Planet, where it will seek to answer age-old questions about whether life ever existed on Mars – or if the planet can sustain life in the future,” said NASA Administrator Charles Bolden. “This is an amazing achievement, made possible by a team of scientists and engineers from around the world and led by the extraordinary men and women of NASA and our Jet Propulsion Laboratory. President Obama has laid out a bold vision for sending humans to Mars in the mid-2030’s, and today’s landing marks a significant step toward achieving this goal.”

Curiosity landed at 10:32 p.m. Aug. 5, PDT, near the foot of a mountain three miles tall and 96 miles in diameter inside Gale Crater. During a nearly two-year prime mission, the rover will investigate whether the region ever offered conditions favorable for microbial life.

“The Seven Minutes of Terror has turned into the Seven Minutes of Triumph,” said NASA Associate Administrator for Science John Grunsfeld. “My immense joy in the success of this mission is matched only by overwhelming pride I feel for the women and men of the mission’s team.”

Curiosity returned its first view of Mars, a wide-angle scene of rocky ground near the front of the rover. More images are anticipated in the next several days as the mission blends observations of the landing site with activities to configure the rover for work and check the performance of its instruments and mechanisms.

“Our Curiosity is talking to us from the surface of Mars,” said MSL Project Manager Peter Theisinger of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “The landing takes us past the most hazardous moments for this project, and begins a new and exciting mission to pursue its scientific objectives.”

Confirmation of Curiosity’s successful landing came in communications relayed by NASA’s Mars Odyssey orbiter and received by the Canberra, Australia, antenna station of NASA’s Deep Space Network.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on the Mars rovers Spirit and Opportunity. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking elemental composition of rocks from a distance. The rover will use a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

The mission is managed by JPL for NASA’s Science Mission Directorate in Washington. The rover was designed, developed and assembled at JPL.

For more information on the mission, visit http://www.nasa.gov/mars and http://marsprogram.jpl.nasa.gov/msl.

Follow the mission on Facebook and Twitter at http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.




All of this week's top headlines to your email every Friday.


 
 

 
nasa-ames

NASA announces new director of Ames Research Center

NASA Administrator Charles Bolden announced May 4 the selection of Dr. Eugene L. Tu as the next director of the agency’s Ames Research Center in Moffett Field, California, effective immediately. Tu most recently served as the...
 
 

NASA completes MESSENGER mission with expected impact on Mercury’s surface

A NASA planetary exploration mission came to a planned, but nonetheless dramatic, end April 30 when it slammed into Mercury’s surface at about 8,750 mph and created a new crater on the planet’s surface. Mission controllers at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., have confirmed NASA’s MErcury Surface, Space ENvironment, GEochemistry,...
 
 
Air Force photograph by Scott M. Ash

Air Force focuses on assured access to space

Air Force photograph by Scott M. Ash Secretary of the Air Force Deborah Lee James and Gen. John E. Hyten, commander of Air Force Space Command, testify before the Senate Armed Services Committee, Subcommittee on Strategic Force...
 

 

NASA invests in hundreds of U.S. small businesses to enable future missions

NASA has selected research and technology proposals from 254 small businesses and 39 research institutions in the United States for grants to develop new technologies that will further NASA’s journey to Mars. The proposals are solicited, vetted and managed through NASA’s Small Business Innovation Research and Small Business Technology Transfer programs. Proposals that lead to...
 
 

NASA brings in small business for further development of hypervelocity vehicles

NASA has awarded the Entry Systems Technology Research and Development contract to Analytical Mechanics Associates, Inc., a small business in Hampton, Va. As NASA continues on its journey to Mars, the ESTRAD contract will provide engineering support for the development of technologies that will be used to design and fabricate vehicles that travel at hypervelocities...
 
 
NASA photograph

NASA successfully tests shape-changing wing for next gen aviation

NASA photograph NASA successfully completed flight tests of a morphing wing technology. Flap angles were adjusted from -2 degrees up to 30 degrees during the six months of testing. NASA researchers, working in concert with the ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>