Space

August 6, 2012

NASA’s Curiousity Rover caught in act of landing

An image from the High Resolution Imaging Science Experiment camera aboard NASA’s Mars Reconnaissance Orbiter captured the Curiosity rover still connected to its 51-foot-wide parachute as it descended toward its landing site at Gale Crater Aug. 5.

“If HiRISE took the image one second before or one second after, we probably would be looking at an empty Martian landscape,” said Sarah Milkovich, HiRISE investigation scientist at the Jet Propulsion Laboratory in Pasadena, Calif. “When you consider that we have been working on this sequence since March and had to upload commands to the spacecraft about 72 hours prior to the image being taken, you begin to realize how challenging this picture was to obtain.”

The image was taken while MRO was 211 miles away from the parachuting rover. Curiosity and its rocket-propelled backpack, contained within the conical-shaped back shell, had not deployed yet. At the time, Curiosity was about two miles above the Martian surface.

“Guess you could consider us the closest thing to paparazzi on Mars,” said Milkovich. “We definitely caught NASA’s newest celebrity in the act.”

Curiosity, NASA’s latest contribution to the Martian landscape, landed at 10:32 p.m., PDT, Aug. 5 near the foot of a three-mile tall mountain inside Gale Crater, which is 96 miles in diameter.

In other Curiosity news, one part of the rover team at JPL continues to review the data from Sunday night’s landing while another continues to prepare the 1-ton mobile laboratory for its future explorations of Gale Crater. One key assignment given to Curiosity for its first full day on Mars is to raise its high-gain antenna. Using this antenna will increase the data rate the rover can communicate directly with Earth. The mission will use relays to orbiters as the primary method for sending data home because that method is much more energy efficient for the rover.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on the Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop which is located at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

The Mars Science Laboratory Curiosity mission is managed by JPL for NASA’s Science Mission Directorate in Washington. The rover was designed, developed and assembled at JPL.

HiRISE is operated by the University of Arizona in Tucson. The instrument was built by Ball Aerospace & Technologies Corp. in Boulder, Colo. The Mars Reconnaissance Orbiter and Mars Exploration Rover projects are managed by JPL for NASA’s Science Mission Directorate. JPL is a division of the California Institute of Technology in Pasadena. Lockheed Martin Space Systems in Denver, built the orbiter.




All of this week's top headlines to your email every Friday.


 
 

 
ISS-soyuz

Soyuz Heads to ISS with new crew, return transportation for one-year mission team

WASHINGTON, Sept. 2, 2015 /PRNewswire/ Three crew members representing Russia, Denmark and Kazakhstan have launched to the International Space Station to provide a new ride home for the station’s one-year crew and continu...
 
 
LMOrion1

Orion arrives in Colorado

The Orion crew module flown 3,600 miles into space during Exploration Flight Test-1 has arrived to the Lockheed Martin Space Systems Company headquarters in Littleton, Colorado. While in Colorado, engineers will perform final d...
 
 
ULAlaunch

United Launch Alliance successfully launches U.S. Navy’s MUOS-4

A United Launch Alliance Atlas V rocket carrying the fourth Mobile User Objective System satellite for the U.S. Navy launched from Space Launch Complex-41 at 6:18 a.m., EDT, Sept. 2 from Cape Canaveral Air Force Station, Fla. T...
 

 
LM-MUOS

U.S. Navy, Lockheed Martin ready to launch MUOS-4 Aug. 31

The U.S. Navy and Lockheed Martin are ready to launch the fourth Mobile User Objective System secure communications satellite, MUOS-4, from Cape Canaveral Air Force Station, Fla., Aug. 31 aboard a United Launch Alliance Atlas V...
 
 

NASA seeks proposals for extreme environment solar arrays

NASA’s space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there...
 
 

NASA awards contract for construction of new mission launch command center

NASA has awarded a contract to Harkins Contracting Inc. of Salisbury, Maryland, for the construction of a new Mission Launch Command Center at the agency’s Wallops Flight Facility in Wallops Island, Va. The new 14,174 square-foot facility will serve as the hub for interfacing with and controlling rockets, their payloads and associated launch pad support...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>