Defense

August 6, 2012

Networked vehicle production in full swing at U.S. Army Detroit Arsenal

by Katie Cain
Army News

Pictured here is the Prototype Integration Facility at the U.S. Army Tank Automotive Research, Development and Engineering Center, in Warren, Mich., where the first five “super configuration” mine-resistant, ambush-protected vehicle prototype vehicles equipped with Capability Set 13 assets are being built. The MRAP configurations include Soldier Network Extension, Point of Presence, Vehicular Wireless Package, MaxxPro MRAP and MRAP-Lite.

Beginning in October, the U.S. Army will begin fielding the first integrated group of networked technologies – radios, sensors and associated equipment and software – that will for the first time deliver an integrated voice and data capability throughout the entire Brigade Combat Team, or BCT, formation, from the brigade commander to the dismounted soldier.

This networked package, known as Capability Set 13, or CS 13, is the Army’s tactical network baseline designed to extend the network down to the individual Soldier and significantly enhance Mission Command on the Move and soldier connectivity.

The connectivity, architecture and components of CS 13 were validated at the service’s most recent Network Integration Evaluation, NIE 12.2, conducted May-June at White Sands Missile Range, N.M., but the ongoing integration and planning work began months before.

A large part of the planning involves bringing together the Army’s Program Executive Offices, PEOs, and Program Managers, known as PMs, during the NIE/Agile Process using the Capability Set Integrated Master Schedule, or IMS, for integration, production and deployment. The IMS is the backbone of CS 13 as it serves to synchronize the network and vehicle PMs’ master schedules as they relate to integrating and fielding capability sets.

The Army’s Capability Set fielding plan supports a synchronized vehicle and network fielding strategy, prioritizes capabilities for our deployed forces and improves alignment of limited resources.

In May, the Army completed the mine-resistant, ambush-protected vehicle, or MRAP, final design review, which solidified how CS 13 assets will be integrated into that vehicle platform. MRAPs will be utilized in the first Infantry Brigade Combat Team, or BCT, formations that will be equipped with CS 13. The NIE has been vital to validating MRAP network design and architecture.

Currently, the first five “super configuration” MRAP prototype vehicles are being built at the U.S. Army Tank Automotive Research, Development and Engineering Center, located in Warren, Mich. The five MRAP super configurations include Soldier Network Extension, Point of Presence Vehicular Wireless Package, MaxxPro and MRAP-Lites.

“This project is considered a level one because it’s so large,” said Marc Mroczka, project engineer for the Center for Ground Vehicle Development and Integration at TARDEC. “There are five trucks, a lot of electronics equipment, a lot of design and a lot of integration.”

Mroczka leads the CS 13 performance efforts, which include running technical meetings, following the integration activities that take place on a day-to-day basis, and bringing together the different facets within engineering groups at TARDEC, as well as the overall design.

Support personnel at the U.S. Army Tank Automotive Research, Development and Engineering Center, in Warren, Mich., review vehicle blueprints for the first five “super configuration” mine-resistant, ambush-protected vehicle prototype vehicles equipped with Capability Set 13, or CS 13, assets. CS 13 is the first integrated group of networked technologies – radios, sensors and associated equipment and software – that will deliver an integrated voice and data capability throughout the entire Brigade Combat Team formation, from the brigade commander to the dismounted soldier.

Each BCT has 373 vehicles, and under the current construct, there are 42 combinations under the five super configurations, which allows the Army to build any combination within each configuration without altering the vehicle.

“This allows you to change what you put in a vehicle while protecting the vehicle space,” said Mroczka. “For example, if you needed to swap out a radio for a different one, it can easily be done.”

This was one of the things we learned during NIE, Mroczka explained. There is some overlap in the individual systems but it wasn’t necessary to put every CS 13 systems on every vehicle in the NIE. The main thing we had to do was figure out how to pull all those systems together afterward. That’s how we designed the super configurations, he said.

Soldier feedback out of the NIE process has been invaluable as it has led to many significant design and user interface improvements that are currently being incorporated into the final MRAP configurations.

“One of the things we learned during the IOT&E was that both the commander and the driver needed to be able to see the display screen in an MRAP,” said Jerry Tyree, System of Systems Integration lead engineer. “Based on Soldier feedback, we were able to move a screen to the back of the seat so the commander and the driver could see what was going on.”

These screens, known as Multi-Domain Atlas,’ were not part of NIE 12.2, but they will be installed on the CS 13-equipped vehicles.

In addition to changes spawning from the NIE and the ongoing MRAP integration, TARDEC is also working the design for networked Humvee platforms that will be used as training sets by continental U.S.-based units as they prepare to deploy. Roughly 30-35 TARDEC employees, plus personnel from SoSI and PM MRAP are involved with the MRAP and Humvee design/production.

“One of the most challenging aspects of this project is the rigid schedule,” said Mroczka. “We’ve never had these types of requirements and design builds due in such a short time frame and everything we do affects the other organizations involved in CS 13 vehicle production.”

The remaining prototype vehicles to be equipped with CS 13 will be built at the Navy’s Space and Naval Warfare Systems Command, or SPAWAR, in Charleston, S.C., and the Red River Army Depot in Texarkana, Texas. SPAWAR will build the MRAP production assets to support the October fielding of CS 13, while Humvee training set production will be done at Red River.

Once the prototype vehicles are fully built, they’ll be shipped to Aberdeen Proving Ground, Md., where they will undergo initial safety release and network verification testing. This will begin mid-August, and the last set of vehicles will be shipped mid-September.

Following this, the vehicles will be turned over to the 3rd and 4th Brigades from the 10th Mountain Division, the first two BCTs to receive CS 13, to begin New Equipment Training, Oct. 1. The units will train on the equipment until they deploy with CS 13 assets in 2013.

The Army will field CS 13 to eight BCTs, with priority going to deployed forces (three BCTs), units scheduled to deploy next (three BCT training sets), a forward-stationed brigade in Korea, and the 2nd Heavy BCT, 1st Armored Division, which was the first unit to receive CS 13 equipment during NIE 12.2.

After fielding CS 13, the Army will program to field up to six BCT sets of network equipment per year for the fiscal year 2014-2018 Program Objective Memorandum, to better synchronize its platform and network modernization efforts.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>