Tech

August 9, 2012

Laser revolutionizes sheet metal cutting at Army Depot

Tags:
by Brigitte Rox
Corpus Christi, Texas

A Corpus Christi Army Depot sheet metal mechanic operates the new laser cutter. The machine revolutionizes sheet metal cutting by making it safer, faster and more accurate than ever.

Nobody works on more Army helicopters than Corpus Christi Army Depot, so when it comes to repair and overhaul, they cut a lot of metal.

Gone are the days of hunching over a pristine sheet of metal meticulously drilling holes and patterns by hand. Now, depot artisans are a step closer to automating the entire sheet metal manufacturing process at Corpus Christi Army Depot, or CCAD.

“This automation will increase quality, reduce manufacturing times and allow one standard time allotted for cutting and deburring patterns and formatting aircraft sheet metal parts manufactured at CCAD,” said Roland de la Fuente, a sheet metal mechanic supervisor.

Their new laser was put into production in 2010, but it went virtually unnoticed next to the bus-sized fluid cell press that normally steals the show.

“It takes having to see the laser in action to really get the ‘wow factor,'” said de la Fuente of the new laser cutter.

Corpus Christi Army Depot’s new laser cutter zaps through metal to create parts for Army helicopters.

The fixture is described by the manufacturer as a high performance linear motor that delivers high-speed cutting for fast, continuous processing of high quality parts.

The laser cutting fixture is used to cut sheet metal patterns that are later formed with the fluid cell flex press or power brakes before they are put on a helicopter.

With a cutting speed of 40 meters per minute, the laser is faster than producing patterns by hand. The laser can cut through several thicknesses of different material, including plate steel, stainless steel and aluminum. Patterns are guaranteed to cut within tolerance, with a repetitive accuracy of .0008 ten thousandths of an inch.

Aircraft sheet metal mechanic Jeremy Garcia has noticed a big difference in the time it takes to produce parts since they started using the new fixture.

“It took us 24 hours to manufacture by hand,” he said. “Now manufacturing takes only eight hours.”

In the past, a sizeable product like a UH-60Black Hawk helicopter bulkhead required the part to be pressed by hand in multiple sections. It all changed with the new fixture. The laser cutter can cut a pattern in as little as five minutes.

“It’s one run and that’s it,” said Garcia.

The advantage of the new laser comes with the computer technology. The laser is controlled using a computer and CADMAN software. The CADMAN is a computer-aided drafting program that specifies the laser’s cutting path.

“The laser is the first member of a fabrication cell I am developing to support the fluid flex cell,” said de la Fuente. Plans for another laser, a turrent punch and two power breaks, all using the same CADMAN software, are in the works.

By utilizing the same CADMAN software, all the machines will be able to community with each other. According to LVD, the CADMAN programming software offers offline integration of the key sheet metalworking processes of laser, punching and bending.

“This will allow the artisans to create pattern-cutting and forming programs at the instant the flat patterns is drafted in CADMAN,” said de la Fuente. “The artisan can then transfer the pattern-cutting program to a punch or laser or even transfer a brake-forming program to the power brakes without having to leave his seat.”

“The laser has performed superbly thus far,” he said.

The laser cutting fixture and the subsequent automation implementations will allow CCAD to schedule accurately and allow the training of a more technologically-proficient workforce to meet unpredicted surges in demand.

 




All of this week's top headlines to your email every Friday.


 
 

 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 
 
NASA/Boeing image

NASA wraps up first green aviation tests on Boeing ecoDemonstrator

NASA/Boeing image NASA’s recent green aviation tests included the Active Flow Control Enhanced Vertical Tail Flight Experiment, for which 31 tiny devices called sweeping jet actuators were installed on the tail of a Boein...
 

 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 
 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>