Space

August 13, 2012

NASA Curiosity Mars rover installing smarts for driving

NASA’s Mars rover Curiosity spent its first weekend on Mars transitioning to software better suited for tasks ahead, such as driving and using its strong robotic arm.

The rover’s “brain transplant,” occurred during a series of steps Aug. 10 through Aug. 13, installed a new version of software on both of the rover’s redundant main computers. This software for Mars surface operations was uploaded to the rover’s memory during the Mars Science Laboratory spacecraft’s flight from Earth.

“We designed the mission from the start to be able to upgrade the software as needed for different phases of the mission,” said Ben Cichy of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., chief software engineer for the Mars Science Laboratory mission. “The flight software version Curiosity currently is using was really focused on landing the vehicle. It includes many capabilities we just don’t need any more. It gives us basic capabilities for operating the rover on the surface, but we have planned all along to switch over after landing to a version of flight software that is really optimized for surface operations.”

A key capability in the new version is image processing to check for obstacles. This allows for longer drives by giving the rover more autonomy to identify and avoid potential hazards and drive along a safe path the rover identifies for itself. Other new capabilities facilitate use of the tools at the end of the rover’s robotic arm.

While Curiosity is completing the software transition, the mission’s science team is continuing to analyze images that the rover has taken of its surroundings inside Gale Crater. Researchers are discussing which features in the scene to investigate after a few weeks of initial checkouts and observations to assess equipment on the rover and characteristics of the landing site.

The Mars Science Laboratory spacecraft delivered Curiosity to its target area on Mars at 10:31:45 p.m., PDT, Aug. 5, which includes the 13.8 minutes needed for confirmation of the touchdown to be radioed to Earth at the speed of light.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on NASA’s Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop, which are located at the end of its robotic arm, to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site at 4.59 degrees south, 137.44 degrees east, places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

For more about NASA’s Curiosity mission, visit http://www.nasa.gov/mars and http://marsprogram.jpl.nasa.gov/msl.

Follow the mission on Facebook and Twitter at http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines February 25, 2015

News: Army to send headquarters group to Kandahar in first sign of revision to Afghan withdrawal plan - In the first official sign that the Pentagon plans to keep a U.S. military presence in southern Afghanistan after this year, the Army is sending the 7th Infantry Division headquarters from Joint Base Lewis-McChord on a year-long deployment...
 
 

News Briefs February 25, 2015

Lithuania restores compulsory military service Lithuania will restore compulsory military service for young men as tensions in Ukraine continue to worry the small Baltic nation, the government said Feb. 24. After a meeting of military leaders and top government officials, President Dalia Grybauskaite said the measure was necessary because of growing aggression in Ukraine. Military...
 
 
Sensor Concepts Inc. photograph

Air Force Research Labís handheld imaging tool expands aircraft inspection capability

Sensor Concepts Inc. photograph An operator demonstrates the portability of the handheld imaging tool. The technology provides maintainers the ability to evaluate aircraft in the field to ensure mission-readiness. When pilots c...
 

 

Boeing, Royal Australian Air Force test extended range weapon

The Boeing Joint Direct Attack Munition Extended Range demonstrated significant range increase while maintaining its expected accuracy during flight testing conducted by Boeing and the Royal Australian Air Force. The testing centered on a new wing kit that, when used in conjunction with the weaponís guidance kit, increases the bomb’s range from approximately 15 miles...
 
 

DRS Technologies to provide comm systems for Royal New Zealand Navy frigates

DRS Technologies Inc., a Finmeccanica Company, announced Feb. 25 that its Canadian subsidiary will be providing tactical integrated communications systems to the New Zealand Ministry of Defense for the Royal New Zealand Navy’s ANZAC-class frigates. This subcontract was awarded to DRS Technologies Canada Ltd. in support of a communications modernization contract from Lockheed Martin Canada...
 
 

Northrop Grumman LITENING achieves two million operating hour milestone

In the life cycle of every military system, some milestones stand out as signature achievements. One million operating hours is one of them – and Northrop Grumman’s fielded AN/AAQ-28(V) LITENING pods have hit that number for the second time. “This is a significant milestone for the LITENING program and our team is proud to be...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>