Space

August 13, 2012

NASA Curiosity Mars rover installing smarts for driving

NASA’s Mars rover Curiosity spent its first weekend on Mars transitioning to software better suited for tasks ahead, such as driving and using its strong robotic arm.

The rover’s “brain transplant,” occurred during a series of steps Aug. 10 through Aug. 13, installed a new version of software on both of the rover’s redundant main computers. This software for Mars surface operations was uploaded to the rover’s memory during the Mars Science Laboratory spacecraft’s flight from Earth.

“We designed the mission from the start to be able to upgrade the software as needed for different phases of the mission,” said Ben Cichy of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., chief software engineer for the Mars Science Laboratory mission. “The flight software version Curiosity currently is using was really focused on landing the vehicle. It includes many capabilities we just don’t need any more. It gives us basic capabilities for operating the rover on the surface, but we have planned all along to switch over after landing to a version of flight software that is really optimized for surface operations.”

A key capability in the new version is image processing to check for obstacles. This allows for longer drives by giving the rover more autonomy to identify and avoid potential hazards and drive along a safe path the rover identifies for itself. Other new capabilities facilitate use of the tools at the end of the rover’s robotic arm.

While Curiosity is completing the software transition, the mission’s science team is continuing to analyze images that the rover has taken of its surroundings inside Gale Crater. Researchers are discussing which features in the scene to investigate after a few weeks of initial checkouts and observations to assess equipment on the rover and characteristics of the landing site.

The Mars Science Laboratory spacecraft delivered Curiosity to its target area on Mars at 10:31:45 p.m., PDT, Aug. 5, which includes the 13.8 minutes needed for confirmation of the touchdown to be radioed to Earth at the speed of light.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on NASA’s Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop, which are located at the end of its robotic arm, to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site at 4.59 degrees south, 137.44 degrees east, places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

For more about NASA’s Curiosity mission, visit http://www.nasa.gov/mars and http://marsprogram.jpl.nasa.gov/msl.

Follow the mission on Facebook and Twitter at http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.




All of this week's top headlines to your email every Friday.


 
 

 
ISS-soyuz

Soyuz Heads to ISS with new crew, return transportation for one-year mission team

WASHINGTON, Sept. 2, 2015 /PRNewswire/ Three crew members representing Russia, Denmark and Kazakhstan have launched to the International Space Station to provide a new ride home for the station’s one-year crew and continu...
 
 
LMOrion1

Orion arrives in Colorado

The Orion crew module flown 3,600 miles into space during Exploration Flight Test-1 has arrived to the Lockheed Martin Space Systems Company headquarters in Littleton, Colorado. While in Colorado, engineers will perform final d...
 
 
ULAlaunch

United Launch Alliance successfully launches U.S. Navy’s MUOS-4

A United Launch Alliance Atlas V rocket carrying the fourth Mobile User Objective System satellite for the U.S. Navy launched from Space Launch Complex-41 at 6:18 a.m., EDT, Sept. 2 from Cape Canaveral Air Force Station, Fla. T...
 

 
LM-MUOS

U.S. Navy, Lockheed Martin ready to launch MUOS-4 Aug. 31

The U.S. Navy and Lockheed Martin are ready to launch the fourth Mobile User Objective System secure communications satellite, MUOS-4, from Cape Canaveral Air Force Station, Fla., Aug. 31 aboard a United Launch Alliance Atlas V...
 
 

NASA seeks proposals for extreme environment solar arrays

NASA’s space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there...
 
 

NASA awards contract for construction of new mission launch command center

NASA has awarded a contract to Harkins Contracting Inc. of Salisbury, Maryland, for the construction of a new Mission Launch Command Center at the agency’s Wallops Flight Facility in Wallops Island, Va. The new 14,174 square-foot facility will serve as the hub for interfacing with and controlling rockets, their payloads and associated launch pad support...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>