Tech

August 14, 2012

SCat Gun System saves money, hastens development

Tags:
by Eric Kowa
Picatinny Arsenal, N.J.

An overhead view of a projectile firing using the Soft Catch Recovery System at Picatinny Arsenal, N.J., which helps reduce the weapons development cycle.

Why would the U.S. Army want to fire a 155 mm projectile into 540 feet of steel catch tubes and then recover the projectile at the other end?

The answer is actually quite simple: It saves time, money and helps to develop better products.

First, the forces the projectile experiences from being fired from a cannon tube can be recorded using on-board-recorders, which help engineers design robust and reliable precision munition systems and components.

That information is then transferred to a computer, analyzed and provides valuable feedback to engineers and war fighters to help in the future development of weapons and munitions systems.

Second, the Soft Catch, or SCat, Gun System saves money Engineers can either catch the round and easily recover it within minutes at Picatinny Arsenal or traipse through the desert in Arizona looking for the round they just fired.

Without the Soft Recovery System facility and the Soft Catch Gun capability, the costs associated with weaponizing advanced technology increase to the point where programs are managed at high risk to fit within allocated budgets.

The SCat facility is owned and operated by the U.S. Army Armament Research, Development and Engineering Center, or ARDEC, and dovetails with the organization’s mission.

Development programs such as the Excalibur Precision Ammunition and Precision Guidance Kits can use such a system for ongoing development, thus reducing development cycle time and cost.

“This is here to soft-catch projectiles so that we can tear them apart after we have fired them to determine what has or has not survived,” said Robert Marchak, a mechanical engineer in the Fuze Division of the Munitions Engineering Technology Center.

“We are trying to increase the reliability of smart munitions when we give them to the soldier,” he said.

The SCat Gun System is comprised of a 155 mm Howitzer weapon with a M199 gun tube and 540 feet of catch tubes. This is a hybrid system that uses both pressurized air and water to help slow down the projectile’s momentum. This system at Picatinny Arsenal, N.J., is the only system of its kind in the world.

The system is comprised of a 155 mm Howitzer weapon with a M199 gun tube and 540 feet of catch tubes.

This is a hybrid system that uses both pressurized air and water to help slow down the projectile’s momentum. It is the only system of its kind in the world.

The first part of the chain of catch tubes only contains atmospheric air. The next section, 320 feet of the tubes, contains pressurized air, followed by an 80-foot section filled with water.

A small burst diaphragm seals one end of the pressurized air and a piston seals the other end.

The piston also separates the water and pressurized air sections. The burst diaphragm and piston are replaced after each test fire.

Once fired, the projectile achieves free flight for approximately 6 feet and travels down the catch tubes, generating shockwaves that interact with the atmospheric air section, the burst diaphragm, the pressurized air section, the piston and the water section.

In a little over one second, the projectile shock waves break the burst diaphragm. The air section is compressed and pushed forward, shock and pressure shear the piston moving it against the water (momentum transfer), all while slowing the projectile to a stop.

The piston is ejected out of the end of the system,followed by the air and water, and finally the projectile comes to rest in a mechanized brake system.

On-board-recorders inside the projectile measure the accelerations of the projectile from the gun-launch and the catch events.

With a muzzle velocity of 888 meters per second, the entire test takes a little over one second from the time the projectile is fired until it has completely stopped.

The speed of 888 meters per second is equal to 1,986 miles per hour. If a commuter plane could travel at that speed, passengers could fly from Picatinny Arsenal to Albuquerque, N.M., in one hour.

The catch tubes are made of the same steel used to manufacture the 155 mm gun tube.

What makes this system attractive is the tight fit achieved just over the projectile bourlette diameter. This helps keep the projectile straight and makes for a smooth ride.

In addition, the system was designed to quickly remove and replace broken parts. Having the capability to quickly turn the system around after part failures is critical in maintaining an ongoing testing capability, which in turn helps weapons programs stay on schedule.

Since the system is entirely made of metal, temperature fluctuations cause the system to expand with heat and contract when cold.

The system was designed to remain straight, yet have the ability to move in the axial direction during these temperature changes, otherwise, if completely fixed, the stresses caused by contractions or expansions could break bolts or other critical parts on the system.

“This whole system during the winter-to-summer months can grow or shrink about two inches on any given day,” Marchak said.

The speed and or velocity of the projectile can be controlled by the energetic operator using a pre-determined amount of propellant, but in doing so, the amount of pressurized air and mass of water needs to be accounted for as well.

“This whole system is more or less based on the velocity of the projectile. The faster the projectile flies, the more pressurized air and water mass you need to try and slow it down,” Marchak said.

Marchak said that in order to determine the amount of air pressure and water mass used in the system, many variables need to be considered, including the outside temperature, since the density of the pressurized air changes with temperature.

“We also have a lot of instrumentation, pressure gauges, accelerometers, temperature sensors, proximity sensors,” Marchak added. “We are trying to measure and characterize how the projectile and the shock wave that comes off the projectile travels down the tube.”

The data is dumped into an electronics data conex box alongside the catch system, then transferred to the safety bunker where a team of engineers save, process, and evaluate the information.

Some of the items tested in the SCat gun include electronic safe and arm devices, GPS electronics boards, infrared cameras, control actuation systems, guidance and navigation units, and many more mechanical and electrical components.

Current customers include the U.S. Army, Excalibur, Honeywell, Lockheed Martin, Rockwell Collins, BAE, and Goodrich.

The Goodrich use of the SCat Gun System has been increasing, with the team achieving a milestone of its 500th shot, May 22, 2012.

A typical test day includes four to five test shots at an average cost of $28,000, which Marchak describes as a small price for helping war fighters in the pursuit of battlefield dominance.

The first round fired from the 155 mm SCat Gun System came in April 2007. Now, with 559 shots completed to date, Marchak said the system is becoming the standard for precision munitions testing.

 




All of this week's top headlines to your email every Friday.


 
   
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>