Space

August 15, 2012

Digital processors limited by power; What’s the UPSIDE?

Artist’s concept. Through UPSIDE, sensor data is analyzed by an array of self-organizing devices. The array processes the data using inference, where elements of the image are automatically sorted based on similarities and dissimilarities. Sensor data flows into the array and target identification and tracking is the output.

Today’s Defense missions rely on a massive amount of sensor data collected by intelligence, surveillance and reconnaissance platforms.

Not only has the volume of sensor data increased exponentially, there has also been a dramatic increase in the complexity of analysis required for applications such as target identification and tracking.

The digital processors used for ISR data analysis are limited by power requirements, potentially limiting the speed and type of data analysis that can be done. A new, ultra-low power processing method may enable faster, mission critical analysis of ISR data.

The Unconventional Processing of Signals for Intelligent Data Exploitation (UPSIDE) program seeks to break the status quo of digital processing with methods of video and imagery analysis based on the physics of nanoscale devices. UPSIDE processing will be non-digital and fundamentally different from current digital processors and the power and speed limitations associated with them.

Instead of traditional complementary metal-oxide-semiconductor (CMOS)-based electronics, UPSIDE envisions arrays of physics-based devices (nanoscale oscillators may be one example) performing the “processing. These arrays would self-organize and adapt to inputs, meaning that they will not need to be programmed as digital processors are. Unlike traditional digital processors that operate by executing specific instructions to compute, it is envisioned that the UPSIDE arrays will rely on a higher level computational element based on probabilistic inference embedded within a digital system.

Probabilistic inference is the fundamental computational model for the UPSIDE program. An inference process uses energy minimization to determine a probability distribution to find the object that is the most likely interpretation of the sensor data. It can be implemented directly in approximate precision by traditional semiconductors as well as by new kinds of emerging devices.

“Redefining the fundamental computation as inference could unlock processing speeds and power efficiency for visual data sets that are not currently possible,” explained Dan Hammerstrom, DARPA program manager. “DARPA hopes that this type of technology will not only yield faster video and image analysis, but also lend itself to being scaled for increasingly smaller platforms.”

An interdisciplinary approach is expected as interested performer teams must address three tasks set forth in the UPSIDE solicitation. Task 1 forms the foundation for the program and involves the development of the computational model and the image processing application that will be used for demonstration and benchmarking. Tasks 2 and 3 will build on the results of Task 1 to demonstrate the inference module implemented in mixed signal CMOS in Task 2 and with non-CMOS emerging nano-scale devices in Task 3. The ability to successfully address all three tasks will require close collaboration within the proposer’s team and will be an important aspect of any successful UPSIDE effort.

“Leveraging the physics of devices to perform computations is not a new idea, but it is one that has never been fully realized,” added Hammerstrom. “However, digital processors can no longer keep up with the requirements of the Defense mission. We are reaching a critical mass in terms of our understanding of the required algorithms, of probabilistic inference and its role in sensor data processing, and the sophistication of new kinds of emerging devices. At DARPA, we believe that the time has come to fund the development of systems based on these ideas and take computational capabilities to the next level.”

 




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>