Space

August 15, 2012

Digital processors limited by power; What’s the UPSIDE?

Artist’s concept. Through UPSIDE, sensor data is analyzed by an array of self-organizing devices. The array processes the data using inference, where elements of the image are automatically sorted based on similarities and dissimilarities. Sensor data flows into the array and target identification and tracking is the output.

Today’s Defense missions rely on a massive amount of sensor data collected by intelligence, surveillance and reconnaissance platforms.

Not only has the volume of sensor data increased exponentially, there has also been a dramatic increase in the complexity of analysis required for applications such as target identification and tracking.

The digital processors used for ISR data analysis are limited by power requirements, potentially limiting the speed and type of data analysis that can be done. A new, ultra-low power processing method may enable faster, mission critical analysis of ISR data.

The Unconventional Processing of Signals for Intelligent Data Exploitation (UPSIDE) program seeks to break the status quo of digital processing with methods of video and imagery analysis based on the physics of nanoscale devices. UPSIDE processing will be non-digital and fundamentally different from current digital processors and the power and speed limitations associated with them.

Instead of traditional complementary metal-oxide-semiconductor (CMOS)-based electronics, UPSIDE envisions arrays of physics-based devices (nanoscale oscillators may be one example) performing the “processing. These arrays would self-organize and adapt to inputs, meaning that they will not need to be programmed as digital processors are. Unlike traditional digital processors that operate by executing specific instructions to compute, it is envisioned that the UPSIDE arrays will rely on a higher level computational element based on probabilistic inference embedded within a digital system.

Probabilistic inference is the fundamental computational model for the UPSIDE program. An inference process uses energy minimization to determine a probability distribution to find the object that is the most likely interpretation of the sensor data. It can be implemented directly in approximate precision by traditional semiconductors as well as by new kinds of emerging devices.

“Redefining the fundamental computation as inference could unlock processing speeds and power efficiency for visual data sets that are not currently possible,” explained Dan Hammerstrom, DARPA program manager. “DARPA hopes that this type of technology will not only yield faster video and image analysis, but also lend itself to being scaled for increasingly smaller platforms.”

An interdisciplinary approach is expected as interested performer teams must address three tasks set forth in the UPSIDE solicitation. Task 1 forms the foundation for the program and involves the development of the computational model and the image processing application that will be used for demonstration and benchmarking. Tasks 2 and 3 will build on the results of Task 1 to demonstrate the inference module implemented in mixed signal CMOS in Task 2 and with non-CMOS emerging nano-scale devices in Task 3. The ability to successfully address all three tasks will require close collaboration within the proposer’s team and will be an important aspect of any successful UPSIDE effort.

“Leveraging the physics of devices to perform computations is not a new idea, but it is one that has never been fully realized,” added Hammerstrom. “However, digital processors can no longer keep up with the requirements of the Defense mission. We are reaching a critical mass in terms of our understanding of the required algorithms, of probabilistic inference and its role in sensor data processing, and the sophistication of new kinds of emerging devices. At DARPA, we believe that the time has come to fund the development of systems based on these ideas and take computational capabilities to the next level.”

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Carla Thomas

Katherine Lott awarded NASA Armstrong employee scholarship

NASA photograph by Carla Thomas Katherine Lott, the recipient of the 2014 NASA Armstrong Employee Exchange Council Joseph R. Vensel Memorial Scholarship, is congratulated by NASA Armstrong center director David McBride. Flankin...
 
 
NASA Earth Observatory photograph

NASA selects instruments to track climate impact on vegetation

NASA Earth Observatory photograph Two new spaceborne Earth-observing instruments will help scientists better understand how global forests and ecosystems are affected by changes in climate and land use change. This image of the...
 
 
ULA photograph

AF launches successful satellite mission

ULA photograph The Automated Navigation and Guidance Experiment for Local Space satellite, an Air Force Research Laboratory experimental satellite, and two Air Force Space Command Geosynchronous Space Situational Awareness Prog...
 

 
NASA photograph by Ken Ulbrich

NASA’s Chief Scientist Ellen Stofan vists Armstrong Flight Research Center

NASA photograph by Ken Ulbrich Surrounded by small remotely piloted aircraft, Albion Bowers explains to Ellen Stofan how technologies are tested on small platforms prior to full scale tests. NASA’s chief scientist Ellen S...
 
 
NASA/JPL-Caltech image

NASA’s Mars spacecraft maneuvers to prepare for close comet flyby

NASA/JPL-Caltech image This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 m...
 
 
Image courtesy of U.S. Bureau of Reclamation

Satellite study reveals parched U.S. West using up underground water

Image courtesy of U.S. Bureau of Reclamation The Colorado River Basin lost nearly 53 million acre feet of freshwater over the past nine years, according to a new study based on data from NASA’s GRACE mission. This is almost d...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>