Tech

August 15, 2012

Multiscale modeling research seeks atom-to-application understanding of materials

Tags:
by Joyce P. Brayboy
Adelphi, Md.

The Enterprise for Multiscale Research of Materials is a collaboration designed to increase the speed of bringing stronger, lighter protective equipment to soldiers.

At the U.S. Army Research Laboratory scientists and engineers have been studying how they can make higher performance materials for Soldiers at lighter weights.

Army researchers want to enhance Soldiers’ battlefield effectiveness without placing an extra load on their backs.

The challenge has led to the U.S. Army Research Laboratory, or ARL, Enterprise for Multiscale Research of Materials, made up of in-house research and most recently, two cooperative agreements awarded in April. Researchers will develop materials to protect Soldiers in extreme dynamic environments; and create energy efficient devices and batteries.

Johns Hopkins University will lead the materials in extreme environments collaboration. The research lab has invested up to $90 million over 10 years for a five-year initial study that could be renewed for an additional five years. Among the major partner institutions are the California Institute of Technology (Caltech), the University of Delaware and Rutgers University.

University of Utah will head ARL’s multiscale modeling research. The research lab has awarded up to $20.9 million toward the lighter-weight materials program.

A number of institutions will work towards multiscale modeling: Boston University, Rensselaer Polytechnic Institute, Pennsylvania State University, Harvard University, Brown University, the University of California (Davis), and the Polytechnic University of Turin, Italy.

The goal is to bring together experts from government, academia and industry to overcome daunting obstacles to develop new materials.

Scientists in the Sensors and Electron Devices Directorate at U.S. Army Research Laboratory use a range of computational tools in the laboratory, but there are not currently any predictive models for designing advanced materials. The Enterprise for Multiscale Research of Materials will address challenges for computational research.

“It’s a big deal,” said John Beatty, the Materials in Extreme Dynamic Environments collaborative alliance manager, who is part of the Weapons & Materials Research Directorate, ARL. “We will make significant advances in designing materials, but our focus with this enterprise is as much about changing the way people think about designing as it is anything else.”

Right now ARL researchers have some understanding of the mechanical properties of materials and some understanding of the electronic properties, but over time we want to blend the knowledge, said John Pellegrino, acting director of ARL, who was formerly the director of the Computational and Information Sciences Directorate, overseeing the Enterprise for Multiscale Materials Research.

“It is very ambitious to say we will be able to come up with a set of models that can fully describe materials’ behavior,” Pellegrino said. “But we are hopeful we will be able to model materials well enough that we can begin to design materials using the models, and predict how they will behave. This would give us insight into a whole new class of material capabilities.”

In conjunction with ARL, the consortium will lead to a more comprehensive study of materials in the future even though each one is technically independent of the other, Pellegrino said.

The extreme dynamic environments study will be based from the Hopkins Extreme Materials Institute, or HEMI, at Johns Hopkins University in Baltimore, which has been years in the making.

Daphne Pappas with the Weapons and Materials Research Directorate at Aberdeen Proving Ground, Md., prepares materials for her novel plasma process. The Enterprise for Multiscale Research of Materials extreme environments research will explore how materials behave under extreme dynamic environments.

The institute will focus on the behavior of materials and systems under extreme conditions, said K.T. Ramesh, the Alonzo G. Decker, Jr. Professor of Science & Engineering at Johns Hopkins University, founding director of HEMI and a professor of mechanical engineering.

“We are interested in impact and such extreme events from a very broad perspective – including high pressure and high-strain rates,” Ramesh explained.

The science is fundamentally close enough to address a range of related problems, like homeland security, asteroid impact and nuclear threats.

“What affects the material is the huge amount of energy landing all at once,” Ramesh said. “You can’t develop a new protective material until you can understand what happens to it in extreme environments.”

Ramesh wants the joint university-ARL team to both understand fundamental mechanisms and be able to articulate the findings to anyone coming on board.

“That is one of the measures of success,” he said.

Each of the partner institutions involved in the extreme dynamic environments research brings a unique perspective that combines for a multidisciplinary approach to solving the problem.

For instance, Caltech will use a range of tools they have developed over 20 years to accurately model the behavior of materials from the subatomic level all the way to the scale of bulk materials.

“Right now we don’t have a predictive model for designing advanced materials,” said Kaushik Bhattacharya, Caltech’s lead and the Howell N. Tyson Sr., Professor of Mechanics and professor of materials science. “We have some theories that guide us, but they really are not fully predictive.”

Scientists have to understand the complete hierarchy of the advanced materials and how all of the pieces fit together, then how the levels of hierarchy change during a high-velocity impact, Bhattacharya said.

“We hope to increase the speed of development as well as the strength of materials through such rigorous analysis,” he said.

The undertaking may seem huge considering the time frame for incorporating new classes of materials into applications now can take as much as 20 years from initial research to first use.

Kang Xu, a senior researcher with the Electrochemistry Branch, Sensors and Electron Devices Directorate, uses an electrolyte additive to increase lithium ion battery efficiency. One of the Enterprise for Multiscale Research of Materials goals is to limit the weight of the materials used in batteries and protective armor.

There are many risks associated with finding a material that serves the function you need. One major challenge is even if you succeed, it often doesn’t diminish the cost of similar research going forward, said Pellegrino.

“Another challenge is that the complexity of materials has grown,” explained Pellegrino. “Edisonian-approach research has given us spectacular results in the past. We have gotten better armor than before, different electron devices, including batteries, than we have ever had. All of that is great, but what we need now is far more complex than we have ever needed.”

Soldiers are carrying up to 32 pounds of batteries to power their technological devices in the field these days.

This is one of the concerns that the University of Utah-led consortium will address.

“We want to help the Army make advances in fundamental research that will lead to better materials to help our Soldiers in the field,” says computing Professor Martin Berzins, principal investigator from the University of Utah.

Besides batteries, partners, such as Boston University, along with others, will look closely at developing new approaches for designing smaller and more efficient electromagnetic devices that meet military needs.

The design simulation research is based on a five-year plan that could be extended for an additional five years if it is successful.

“What we are looking for is a materials-by-design capability that is done by validated modeling from the smallest to the largest relevant scale,” said Meredith Reed, collaborative alliance manager for the consortium, and member of the Sensors & Electron Devices Directorate at ARL. “We want better control and prediction of transport phenomena in order to get the desired properties to develop new Army technologies.”

The focus of the program is well-aligned with the White House Materials Genomes Initiative, or MGI, that has been underway for about a year to drastically increase advanced materials design, Reed said.

A White House blog posted May 14 mentioned that achieving the MGI vision demands an “all hands on deck” approach, with dedicated involvement from academic institutions, industry, professional societies, as well as government.

“The MGI white paper talks about creating an ecosystem where manufacturing and development come together and are more streamlined so that discoveries might not have to take 20 years to make it to market,” Pellegrino said. “Having that ecosystem increases the chance of collaboration not only in military-specific problems, but the scientific understanding of advanced materials design will grow that much faster across the board.”

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 21, 2014

News: Former Ranger breaks silence on Pat Tillman death: I may have killed him - Almost 10 years after the friendly fire death of former NFL star turned Army Ranger Pat Tillman, a fellow ranger admits that he may have been the one who fired the fatal shot.   Business: Ship study should favor existing designs -...
 
 

News Briefs April 21, 2014

Navy OKs changes for submariners’ sleep schedules The U.S. Navy has endorsed changes to submarine sailors’ schedules based on research into sleep patterns by a military laboratory in Connecticut. With no sunlight to set day apart from night on a submarine, the Navy for decades has staggered sailors’ working hours on schedules with little resemblance...
 
 

NASA cargo launches to space station aboard SpaceX resupply mission

Nearly 2.5 tons of NASA science investigations and cargo are on the way to the International Space Station aboard SpaceX’s Dragon spacecraft. The spacecraft launched atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 3:25 p.m., EDT, April 18. The mission is the company’s third...
 

 

Second series of CASIS-sponsored research payloads launch to ISS

The Center for the Advancement of Science in Space is proud to announce several sponsored research payloads have launched to the International Space Station onboard the Space Exploration Technology Corporation’s Dragon cargo capsule. This marks the second series of investigations headed to the station that are sponsored by CASIS, the nonprofit responsible for managing research...
 
 

Boeing to give California workers $47 million in back pay

PALMDALE, Calif. – Boeing will pay $47 million to hundreds of current and former Southern California employees who are owed back pay and benefits, a union announced April 18. An arbitrator ruled against the aerospace giant in January and laid down guidelines for the payments and interest, but it took months to cull through records...
 
 

NASA selects commercial crew program manager

NASA has selected Kathy Lueders as program manager for the agency’s Commercial Crew Program. Lueders, who has served as acting program manager since October 2013, will help keep the nation’s space program on course to launch astronauts from American soil by 2017 aboard spacecraft built by American companies. “This is a particularly critical time for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>