Defense

August 21, 2012

Army invests $120 million in basic research partnership to exploit new materials

Partners and colleagues of the U.S. Army Research Laboratory came together for the Enterprise for Multiscale Research of Materials kick-off meeting that began July 31, 2012, at Aberdeen Proving Ground, Md. It was a three-day event to bring together those involved for introductions and planning.

As the nation looks for ways to double the speed and reduce the cost of new advanced materials, recent advances have brought it closer to realizing this ability than ever before.

The Army’s already robust materials science research has expanded to include a new $120 million investment in basic research over 10 years that includes more than 12 university partners that want to change the way scientists look at designing advanced materials.

Developments in high performance computing and power, experimental techniques, materials characterization and processing have all led to the Enterprise for Multiscale Research of Materials.

The U.S. Army Research Laboratory,or ARL, Enterprise for Multiscale Research of Materials kick-off meeting held from July 31 to Aug. 2, at Aberdeen Proving Ground, Md., brought together partners and colleagues for this monumental basic research collaboration with ARL’s researchers, academia and industry to pave the way forward.

“The vision for the Enterprise for Multiscale Research of Materials is to achieve a materials-by-design capability that will give us revolutionary devices and materials for the Army. We have that capability only in part now to give the soldier the incredible equipment they have today, but we have to think about the demands of the future,” said John Pellegrino, acting director of ARL.

Cyrus Wadia, assistant director for Clean Energy & Materials R&D with the White House Office of Science and Technology Policy, was the lead speaker at the event, discussing the national push toward high-tech material manufacturing.

“You have a tremendous asset to drive us forward and be a lead in the [White House] materials genomes initiative,” Wadia said. “You are not only equipping our Soldiers, but you are strengthening our nation and our economy in the process.”

Materials are a major part of the American manufacturing enterprise – a central feature of the nation’s economy that generates innovation, opportunities and jobs. The pace of developing new materials today is far too slow, sometimes as much as 20 years, he said.

The Army shares the problem of slow implementation of new materials, said Scott Fish, the Army’s chief scientist. He talked about a portfolio of Army research projects, many of which deal with advanced materials design.

The two collaborative agreements that are part of the enterprise are at the heart of where the Army is going, Fish said.

“Over 60 percent of the Army’s research budget is related directly to new materials,” Fish said. “It’s not an understatement to say materials are at the foundation of almost everything we do.”

A Johns Hopkins University-led group will develop new materials designed to protect Soldiers in extreme dynamic environments. This effort launched on April 16, with an award of up to $90 million. The program is planned for a five-year initial study that could be renewed for an additional five years.

ARL also awarded a University of Utah-led alliance a cooperative agreement with an award up to $20.9 million to develop multiscale modeling techniques needed to design new materials for lighter-weight, more energy efficient electronic devices and batteries for the Soldier.

The in-house component for Multiscale Research of Materials, which has been ongoing since 2010, is a collaboration of leading ARL scientists and engineers in materials research, electron devices research, and computational approaches in models that can span the materials space.

“We have a deep-rooted capability,” Pellegrino said. “The alliance builds on that expertise to take it to the next level. It is a natural progression for us to look at the deeper science and link all of the pieces together.”

As ARL looks at ways to study materials that will enable Soldiers by limiting the weight of the materials used in their protective armor, devices and batteries are several of many goals that the enterprise addresses.

The kick-off introduced partners from Johns Hopkins University, California Institute of Technology, University of Delaware and Rutgers University working on materials in extreme environments. It also brought together partners from the University of Utah, Boston University, Rensselaer Polytechnic Institute, Pennsylvania State University, Harvard University, Brown University, the University of California, Davis, and the Polytechnic University of Turin, Italy that will work on modeling of electronic materials and the in-house enterprise staff of researchers and senior leaders.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 20, 2015

News: Sale of U.S. arms fuels the wars of Arab states - As the Middle East descends into proxy wars, sectarian conflicts and battles against terrorist networks, countries in the region that have stockpiled American military hardware are now actually using it and wanting more. U.S. spending $1 billion to reassure European allies - From Army rotations...
 
 

News Briefs April 20, 2015

Last two Raiders give congressional medal to Ohio museum The last two ìDoolittle Tokyo Raidersî have presented their Congressional Gold Medal for permanent display at a museum in southwest Ohio. The medal arrived at the National Museum of the U.S. Air Force near Dayton in a ceremonial B-25 bomber flight. The medal was awarded by...
 
 
Northrop Grumman photograph

Space Solar Power Initiative established by Northrop Grumman, Caltech

Northrop Grumman photograph Northrop Grumman’s Joseph Ensor (left) and Caltech’s Ares Rosakis (right) shake hands as part of the recent SSPI commemoration event held at the California Institute of Technology, Pasade...
 

 
Navy photograph

Triton UAS conducts first flight with search radar

Navy photograph The MQ-4C Triton unmanned aircraft takes off from Naval Air Station Patuxent River, Md., April 16, to conduct its first flight from the naval base. The aircraft began sensor testing on April 18 and flew with its...
 
 

UTC introduces active side-sticks to large commercial aviation

UTC Aerospace Systems is introducing the world’s first active side-stick controller for large commercial aircraft. UTC Aerospace Systems is a unit of United Technologies Corp. UTC Aerospace Systems’ Actuation & Propeller business unit is supplying the active side-sticks for the cockpit of the new Irkut MC-21 single aisle aircraft. The MC-21 family of aircraft will...
 
 

Boeing presents flight test 787 Dreamliner to air, space museum

Boeing, elected and community leaders joined together April 17 to celebrate the permanent display of one of the original 787-8 Dreamliner flight test airplanes at the Pima Air & Space Museum. “Boeing has a strong presence in Arizona and is proud to share this important achievement in aviation history with the community, our employees and...
 




One Comment


  1. That is very attention-grabbing, You’re a very professional blogger. I’ve joined your feed and look ahead to looking for more of your fantastic post. Additionally, I’ve shared your site in my social networks



Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>