Tech

August 21, 2012

Two hurricane Global Hawks, two sets of instruments

NASA Goddard’s Cloud Physics Lidar electronics are installed in the upper area of NASA’s Global Hawk unmanned aircraft just in front of the aircraft’s communications antenna.

NASA’s Hurricane Severe Storm Sentinel Mission, or HS3, will be studying hurricanes at the end of the summer, and there will be two high-altitude, long-duration unmanned aircraft with different instruments flying over the storms.

The unmanned aircraft, dubbed “severe storm sentinels,” are operated by pilots located in ground control stations at NASA’s Wallops Flight Facility in Wallops Island, Va., and NASA’s Dryden Flight Center on Edwards Air Base, Calif. The NASA Global Hawk is well-suited for hurricane investigations because it can over-fly hurricanes at altitudes greater than 60,000 feet with flight durations of up to 28 hours.

Using unmanned aircraft has many advantages. Hurricanes present an extreme environment that is difficult to sample. They cover thousands of square miles in area, and can also extend up to 50,000 feet in altitude. Second, they involve very high winds, turbulence and heavy precipitation. Third, ground conditions (high winds that create heavy seas or blowing material) make surface observations difficult.

Technicians prepare to install the High-Altitude Imaging Wind and Rain Profiler, or HIWRAP, on the underside of a NASA Global Hawk. HIWRAP is one of the science instruments being carried by the remotely operated high-altitude aircraft during the Hurricane and Severe Sentinel missions.

“Several NASA centers are joining federal and university partners in the Hurricane and Severe Storm Sentinel airborne mission targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin,” said Scott Braun, principal investigator for the HS3 Mission and research meteorologist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Two NASA Global Hawks that will be flying during the HS3 mission. Each will have different payloads, or collections of instruments aboard. Necessary observations are winds, temperature, humidity (water), precipitation, and aerosol (particle) profiles from the surface to the lower stratosphere.

NASA Goddard’s Lihau Li, left, and Gerry Heymsfield adjust the High-Altitude Imaging Wind and Rain Profiler prior to its installation on NASA’s Global Hawk for the upcoming hurricane study.

NASA’s Global Hawk No. 871 cruises over low cloud layers above the Dryden Flight Research Center on Edwards Air Force Base, Calif. This was the first Global Hawk built in the original Advanced Concept Technology Demonstration program, joining NASA’s other Global Hawk, No. 872, for high-altitude, long-endurance environmental science missions.

The first Global Hawk payload, installed in aircraft No. 872, will consist of three instruments. That payload is for sampling the environment that hurricanes are embedded within. A laser system called Cloud Physics Lidar developed at NASA Goddard will be located in the Global Hawk’s nose. CPL measures cloud structure and aerosols such as dust, sea salt particles, smoke particles by bouncing laser light off of those particles and clouds. An infrared instrument called the Scanning High-resolution Interferometer Sounder or S-HIS from the University of Wisconsin in Madison, will be located in the belly of the Global Hawk. It can be used to remotely measure or remotely sense the temperature and water vapor vertical profile along with the sea surface temperature and some cloud properties. A dropsonde system from the National Center for Atmospheric Research and National Oceanic and Atmospheric Administration will be located in the tail of the aircraft. The dropsonde system ejects small sensors tied to parachutes that drift down through the storm measuring winds, temperature and humidity.

Global Hawk No. 871 will also carry a payload of three instruments. That Global Hawk’s prime responsibility is to sample the cores of hurricanes. A microwave system called the High-Altitude MMIC Sounding Radiometer or HAMSR, created by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., will be located in the aircraft’s nose. HAMSR measures temperature, water vapor, and vertical precipitation profiles.

A radar system called the High-altitude Imaging Wind & Rain Airborne Profiler or HIWRAP from NASA Goddard will be located in the second (No. 871) Global Hawk’s belly. It is similar to a ground radar system but pointed downward. HIWRAP measures cloud structure and winds. The Hurricane Imaging Radiometer (HIRAD) from NASA’s Marshall Space Flight Center in Huntsville, Ala., will be located in the aircraft’s tail section. HIRAD measures microwave radiation emitted from the surface and atmosphere. The HIRAD observations yield surface wind speeds and rain rates.

Both Global Hawks will be flying out of NASA Wallops Flight Facility in September, the peak month for the Atlantic Hurricane Season.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines June 29, 2015

News: SpaceX Falcon 9 explodes moments after launch – A SpaceX rocket carrying supplies to the International Space Station blew up June 28 shortly after liftoff.   Business: How serious a setback is SpaceX rocket explosion? – Elon Musk had never come face to face with that rule before — at least not in space travel —...
 
 

News Briefs June 29, 2015

Iraqi pilot in Arizona plane crash found dead Officials say the body of an Iraqi pilot who had been training in the United States and crashed in southern Arizona has been located. Iraq’s Defense Ministry said June 26 that search teams found the body of Brig. Gen. Rasid Mohammed Sadeeq at the crash site five...
 
 
Huntington Ingalls Industries photograph

PCU John Warner delivered to Navy

Huntington Ingalls Industries photograph A dolphin jumps in front of the Virginia-class attack submarine Pre-Commissioning Unit (PCU) John Warner (SSN 785) as the boat conducts sea trials in the Atlantic Ocean. The U.S. Navy ac...
 

 
navair-helo

HX-21 completes first flight with developmental electronic warfare pod

On June 8, 2015, a UH-1Y from Air Test and Evaluation Squadron (HX) 21 completed the first test flight with a developmental electronic warfare pod.  The pod would represent a new tactical capability for U.S. Marine Corps rotar...
 
 

Northrop, Navy celebrate legacy of EA-6B Prowler

Northrop Grumman photograph by Edgar Mills The U.S. Navy’s last operational EA-6B Prowler, designed and built by Northrop Grumman, lifts off from Naval Air Station Whidbey Island, Wash. in a ceremonial fly-away June 27 from its long time operational base. The Navy is retiring the Prowler after nearly 45 years of service.   The U.S....
 
 
Air Force photograph by Capt. Tania Bryan

NORTHERN EDGE provides environment for testing new capabilities

Air Force photograph by Capt. Tania Bryan Aircraft from test and evaluation squadrons across the Air Force line up on the Joint Base Elmendorf-Richardson flightline. Northern Edge is Alaska’s premier joint training exercise d...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>