Tech

August 21, 2012

Two hurricane Global Hawks, two sets of instruments

NASA Goddard’s Cloud Physics Lidar electronics are installed in the upper area of NASA’s Global Hawk unmanned aircraft just in front of the aircraft’s communications antenna.

NASA’s Hurricane Severe Storm Sentinel Mission, or HS3, will be studying hurricanes at the end of the summer, and there will be two high-altitude, long-duration unmanned aircraft with different instruments flying over the storms.

The unmanned aircraft, dubbed “severe storm sentinels,” are operated by pilots located in ground control stations at NASA’s Wallops Flight Facility in Wallops Island, Va., and NASA’s Dryden Flight Center on Edwards Air Base, Calif. The NASA Global Hawk is well-suited for hurricane investigations because it can over-fly hurricanes at altitudes greater than 60,000 feet with flight durations of up to 28 hours.

Using unmanned aircraft has many advantages. Hurricanes present an extreme environment that is difficult to sample. They cover thousands of square miles in area, and can also extend up to 50,000 feet in altitude. Second, they involve very high winds, turbulence and heavy precipitation. Third, ground conditions (high winds that create heavy seas or blowing material) make surface observations difficult.

Technicians prepare to install the High-Altitude Imaging Wind and Rain Profiler, or HIWRAP, on the underside of a NASA Global Hawk. HIWRAP is one of the science instruments being carried by the remotely operated high-altitude aircraft during the Hurricane and Severe Sentinel missions.

“Several NASA centers are joining federal and university partners in the Hurricane and Severe Storm Sentinel airborne mission targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin,” said Scott Braun, principal investigator for the HS3 Mission and research meteorologist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Two NASA Global Hawks that will be flying during the HS3 mission. Each will have different payloads, or collections of instruments aboard. Necessary observations are winds, temperature, humidity (water), precipitation, and aerosol (particle) profiles from the surface to the lower stratosphere.

NASA Goddard’s Lihau Li, left, and Gerry Heymsfield adjust the High-Altitude Imaging Wind and Rain Profiler prior to its installation on NASA’s Global Hawk for the upcoming hurricane study.

NASA’s Global Hawk No. 871 cruises over low cloud layers above the Dryden Flight Research Center on Edwards Air Force Base, Calif. This was the first Global Hawk built in the original Advanced Concept Technology Demonstration program, joining NASA’s other Global Hawk, No. 872, for high-altitude, long-endurance environmental science missions.

The first Global Hawk payload, installed in aircraft No. 872, will consist of three instruments. That payload is for sampling the environment that hurricanes are embedded within. A laser system called Cloud Physics Lidar developed at NASA Goddard will be located in the Global Hawk’s nose. CPL measures cloud structure and aerosols such as dust, sea salt particles, smoke particles by bouncing laser light off of those particles and clouds. An infrared instrument called the Scanning High-resolution Interferometer Sounder or S-HIS from the University of Wisconsin in Madison, will be located in the belly of the Global Hawk. It can be used to remotely measure or remotely sense the temperature and water vapor vertical profile along with the sea surface temperature and some cloud properties. A dropsonde system from the National Center for Atmospheric Research and National Oceanic and Atmospheric Administration will be located in the tail of the aircraft. The dropsonde system ejects small sensors tied to parachutes that drift down through the storm measuring winds, temperature and humidity.

Global Hawk No. 871 will also carry a payload of three instruments. That Global Hawk’s prime responsibility is to sample the cores of hurricanes. A microwave system called the High-Altitude MMIC Sounding Radiometer or HAMSR, created by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., will be located in the aircraft’s nose. HAMSR measures temperature, water vapor, and vertical precipitation profiles.

A radar system called the High-altitude Imaging Wind & Rain Airborne Profiler or HIWRAP from NASA Goddard will be located in the second (No. 871) Global Hawk’s belly. It is similar to a ground radar system but pointed downward. HIWRAP measures cloud structure and winds. The Hurricane Imaging Radiometer (HIRAD) from NASA’s Marshall Space Flight Center in Huntsville, Ala., will be located in the aircraft’s tail section. HIRAD measures microwave radiation emitted from the surface and atmosphere. The HIRAD observations yield surface wind speeds and rain rates.

Both Global Hawks will be flying out of NASA Wallops Flight Facility in September, the peak month for the Atlantic Hurricane Season.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 28, 2014

News: U.S. has lost track of weapons given to Afghanistan - The United States supplied almost three quarter of a million weapons to Afghanistan’s army and police since 2004, but the military cannot track where many of those arms have gone, a new report found. Bill to improve VA has $17 billion price tag - A bipartisan...
 
 

News Briefs July 28, 2014

Marines seek authorization for dolphin deaths The Marine Corps is asking for a five-year authorization from the National Marine Fisheries Service for incidental deaths of bottlenose dolphins during training exercises at a bombing and target range. The Sun Journal of New Bern, N.C., reports that Connie Barclay of the National Oceanic and Atmospheric Administration says...
 
 
Army photograph by David Vergun

Senior leaders explain Army’s drawdown plan

Army photograph by David Vergun No commander is happy when notified that a soldier from his or her command has been identified for early separation. But commanders personally notify those Soldiers and ensure participation in th...
 

 

Northrop Grumman awarded mission support services contract

The U.S. Army awarded Northrop Grumman a cost-plus-fixed-fee contract, with a potential value of $205 million, to continue providing mission logistics services in support of combat brigades training at the National Training Center in Fort Irwin, Calif. The contract covers one base year and two one-year options. Support will include the full range of mission...
 
 
Lockheed Martin photograph by Beth Groom

F-35 Rollout Marks U.S.-Australia Partnership Milestone

Lockheed Martin photograph by Beth Groom Royal Australian Air Force Air Marshal Geoff Brown delivers his remarks at the roll out ceremony for Australia’s first F-35. The official rollout of the first two F-35 Lightning II...
 
 
NASA/JPL-Caltech image

NASA’s Mars spacecraft maneuvers to prepare for close comet flyby

NASA/JPL-Caltech image This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 m...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>