Tech

August 28, 2012

Hiding in plain sight

In DARPA’s soft robot, the microfluidic networks used for camouflage or display are contained in thin silicone sheets referred to as color layers. Various heated or cooled dye, chemiluminescent and fluorescent solutions and water can be pumped through the color layers to adjust temperature and appearance.

This robot is made of silicone. It can walk, change color and light up in the dark. It can even change temperature.

And it can do all of this for less than $100. In the future, robots like this might be made for just a few dollars.

In a development to be reported in the Aug. 17 issue of Science, researchers led by Drs. George Whitesides and Stephen Morin at Harvard University’s Department of Chemistry and Chemical Biology and the Wyss Institute for Biologically Inspired Engineering demonstrated that microfluidic channels in soft robots enable functions including actuation, camouflage, display, fluid transport and temperature regulation. The work is being performed under DARPA’s Maximum Mobility and Manipulation program.

Why does this matter to the Department of Defense? DARPA foresees robots of many shapes and sizes contributing to a wide range of future defense missions, but robotics is still a young field that has focused much of its attention so far on complex hardware. Consequently, the costs associated with robotics are typically very high. What DARPA has achieved with silicone-based soft robots is development of a very low cost manufacturing method that uses molds. By introducing narrow channels into the molds through which air and various types of fluids can be pumped, a robot can be made to change its color, contrast, apparent shape and temperature to blend with its environment, glow through chemiluminescence, and most importantly, achieve actuation, or movement, through pneumatic pressurization and inflation of the channels. The combination of low cost and increased capabilities means DARPA has removed one of the major obstacles to greater DoD adoption of robot technology.

In nature, some organisms use bioluminescence to communicate. DARPA’s soft robot achieves the same glowing effect by pumping chemiluminescent solutions through channels in the robot’s color layer.

Gill Pratt, the DARPA program manager for M3, put the achievement in context: “DARPA is developing a suite of robots that draw inspiration from the ingenuity and efficiency of nature. For defense applications, ingenuity and efficiency are not enough-robotic systems must also be cost effective. This novel robot is a significant advance towards achieving all three goals.”

In the video above, a soft robot walks onto a bed of rocks and is filled with fluid to match the color of the rocks and break up the robot’s shape. The robot moves at a speed of approximately 40 meters per hour; absent the colored fluid, it can move at approximately 67 meters per hour. Future research will focus on smoothing the movements; however, speed is less important than the robot’s flexibility. Soft robots are useful because they are resilient and can maneuver through very constrained spaces.

For this demonstration, the researchers used tethers to attach the control system and pump pressurized gases and liquids into the robot. Tethered operation reduces the size and weight of such robots by leaving power sources and pumps off-board, but future prototypes could incorporate that equipment in a self-contained system. At a pumping rate of 2.25 milliliters per minute, color change in the robot required 30 seconds. Once filled, the color layers require no power to sustain the color.

Aside from their potential tactical value, soft robots with microfluidic channels could also have medical applications. The devices could simulate fluid vessels and muscle motion for realistic modeling or training, and may be used in prosthetic technology.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 2, 2015

News: F-35 loses dogfight to fighter jet from 1980s – A new report alleges that an F-35A was defeated by the very aircraft it is meant to replace.   Business: South Korea selects Airbus for $1.33 billion tanker contract – European aerospace giant Airbus won a $1.33 billion deal June 30 to supply air refueling...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
Untitled-2

Tactical reconnaissance vehicle project eyes hoverbike for defense

The U.S. Army Research Laboratory, or ARL, has been exploring the tactical reconnaissance vehicle, or TRV, concept for nearly nine months and is evaluating the hoverbike technology as a way to get Soldiers away from ground thre...
 

 
Air Force photograph by SSgt. William Banton

Upgraded AWACS platform tested at Northern Edge

Air Force photograph by SSgt. William Banton Maintenance crew members prepare an E-3G Sentry (AWACS) for takeoff during exercise Northern Edge June 25, 2015. Roughly 6,000 airmen, soldiers, sailors, Marines and Coast Guardsmen ...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 
 
Air Force photograph by SSgt. Marleah Robertson

First Marine graduates Air Force’s F-35 intelligence course

Air Force photograph by SSgt. Marleah Robertson Marine Corps 1st Lt. Samuel Winsted, an F-35B Lightning II intelligence officer, provides a mock intelligence briefing to two instructors during the F-35 Intelligence Formal Train...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>