Space

September 6, 2012

NASA Mars rover Curiosity beings arm-work phase

After driving more than a football field’s length since landing, NASA’s Mars rover Curiosity is spending several days preparing for full use of the tools on its arm.

Curiosity extended its robotic arm Wednesday in the first of 6-10 consecutive days of planned activities to test the 7-foot (2.1-meter) arm and the tools it manipulates.

“We will be putting the arm through a range of motions and placing it at important ‘teach points’ that were established during Earth testing, such as the positions for putting sample material into the inlet ports for analytical instruments,” said Daniel Limonadi of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., lead systems engineer for Curiosity’s surface sampling and science system. “These activities are important to get a better understanding for how the arm functions after the long cruise to Mars and in the different temperature and gravity of Mars, compared to earlier testing on Earth.”

Since the Mars Science Laboratory spacecraft placed Curiosity inside Mars’ Gale Crater Aug. 5, the rover has driven a total of 358 feet (109 meters). The drives have brought it about one-fourth of the way from the landing site, named Bradbury Landing, to a location selected as the mission’s first major science destination, Glenelg.

“We knew at some point we were going to need to stop and take a week or so for these characterization activities,” said Michael Watkins, JPL’s Curiosity mission manager. “For these checkouts, we need to turn to a particular angle in relation to the sun and on flat ground. We could see before the latest drive that this looked like a perfect spot to start these activities.”

The work at the current location will prepare Curiosity and the team for using the arm to place two of the science instruments onto rock and soil targets. In addition, the activities represent the first steps in preparing to scoop soil, drill into rocks, process collected samples and deliver samples into analytical instruments.

Checkouts in the next several days will include using the turret’s Mars Hand Lens Imager to observe its calibration target and the Canadian-built Alpha Particle X-Ray Spectrometer to read what chemical elements are present in the instrument’s calibration target.

“We’re still learning how to use the rover. It’s such a complex machine – the learning curve is steep,” said JPL’s Joy Crisp, deputy project scientist for the MSL Project, which built and operates Curiosity.

After the arm characterization activities at the current site, Curiosity will proceed for a few weeks eastward toward Glenelg. The science team selected that area as likely to offer a good target for Curiosity’s first analysis of powder collected by drilling into a rock.

“We’re getting through a big set of characterization activities that will allow us to give more decision-making authority to the science team,” said Richard Cook, MSL project manager at JPL.

Curiosity is one month into a two-year prime mission on Mars. It will use 10 science instruments to assess whether the selected study area ever has offered environmental conditions favorable for microbial life. JPL manages the mission for NASA’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 

 
nasa-telescope

NASA looks to go beyond batteries for space exploration

NASA is seeking proposals for the development of new, more capable, energy storage technologies to replace the battery technology that has long powered America’s space program. The core technologies solicited in the Wedne...
 
 

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center. The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of...
 
 

NASA awards robotics, vehicle, graphics simulation services contract

NASA has selected MacLean Engineering & Applied Technologies of Houston to provide simulation model development for organizations at the agency’s Johnson Space Center, also in Houston. This indefinite-delivery, indefinite-quantity contract has firm-fixed price and cost-plus fixed-fee task orders. Beginning July 1, the contract has a three-year base period followed by two one-year opt...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>