Tech

September 14, 2012

Air Force launches new center at Johns Hopkins

The U.S. Air Force has selected a team led by Johns Hopkins engineers to start a new materials research center of excellence that will develop novel computational and experimental methods to support the next generation of military aircraft.

The Center of Excellence on Integrated Material Modeling, CEIMM, will advance the Computational Integrated Materials Science and Engineering Initiative, which focuses on materials applications within a digital framework.

The methods are expected to contribute to the design of high-performance devices and components in future aircraft structures and turbine engines. The long-term goal is to produce lightweight, yet durable, components for future military aircraft, from fighter jets to surveillance drones.

The center, at Johns Hopkins’ Homewood campus in Baltimore, brings together the nation’s top academic, military and industry researchers under a $3 million U.S. Air Force award, to be disbursed over three years. The center includes researchers from the University of Illinois at Urbana-Champaign and the University of California Santa Barbara. CEIMM will seek to continue operating beyond three years by seeking additional funding from the Air Force and other government and industrial sponsors.

“Our initiative seeks to shorten the time required to benefit from advantages offered by advanced materials,” said Barry L. Farmer, chief scientist of the Materials and Manufacturing Directorate, at the Air Force Research Laboratory in Ohio. “We believe that a spectrum of computational tools, coupled with advances in experimental capabilities, can alter the paradigm of how materials are selected and utilized today.”

Researchers will focus on developing novel modeling and experimental techniques that can be applied across several classes of structural materials. Proof of concept will be shown in alloys for high temperature applications and polymer matrix composite materials for aerospace components such as the chassis and fuselage.

“We’ll start by understanding existing materials from the atomic scale all the way to the structural scales through state-of-the-art research, and then we’ll move to designing a new generation of advanced aerospace materials,” said Somnath Ghosh, the Michael G. Callas professor in Johns Hopkins’ departments of Civil Engineering and Mechanical Engineering, who is the director of the CEIMM.

The center will operate within the Hopkins Extreme Materials Institute, HEMI, which opened earlier this year. The institute focuses on the behavior of materials and systems under extreme conditions and will apply this research to a range of related areas.

“With the establishment of HEMI, and now this center, we have been able to pull together the nation’s leading academic, industry and military leaders to begin paving the way toward a 21st century generation of materials,” said Nicholas P. Jones, Benjamin T. Rome Dean of the Whiting School of Engineering. “This mission is critical to the nation’s security, and we are proud to play a key role.”

The center and institute will share some staffing and infrastructure. Although they will initially operate within existing space, both will be relocated to Malone Hall, a 56,000-square-foot research building. The new building will be completed in 2014.

At CEIMM, researchers will focus on advanced computational and experimental methods of determining how different materials respond to different levels of loading and temperatures that can cause failure in aircraft engines and other components.

“For example, turbine engines produce more thrust as an aircraft takes off and the higher loads and temperatures can produce changes in the dimensions of the components. This can cause all sort of problems-engine parts may hit the casing, setting off a fire,” said Ghosh. “In cases like that, we would try to find out how to increase the material’s thermal-mechanical stability so that it can perform at higher loads and temperatures.”

Researchers will construct three-dimensional representations of aerospace and engine materials, from atomic configurations and beyond. Virtual tests will be conducted with powerful computational models to determine, for instance, how cracks form, what causes materials to change shape and how well materials stand up to repeated loadings.

These computational models may bear some resemblance to those used in computational medicine, in which scientists test drugs and study medical disorders with software instead of living subjects. “The idea is that this allows you to cut down on expensive lab experiments,” Ghosh said. “In the computer you can mimic what real experiments can do.”

Although there will be a strong emphasis on virtual experiments, researchers will also be evaluating material properties using multi-scale testing methods on commercial alloys and polymer composites to ensure that the computer models are accurate.

The Air Force award for the new center will also provide funding for new educational opportunities. It is expected to support research that will involve more than a dozen doctoral students, postdoctoral researchers and undergraduates annually.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 

 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 
 
nasa-app-challenge

Help U.S. cope with climate change: Enter NASA-USGS data app challenge

NASA in partnership with the U.S. Geological Survey is offering more than $35,000 in prizes to citizen scientists for ideas that make use of climate data to address vulnerabilities faced by the United States in coping with clim...
 
 
dryden-social3

Event introduces attendees to NASA’s aviation contributions

  NASA is transforming aviation by reducing aircraft environmental impacts, enhancing safety and leading the way in revolutionary new technologies. Those are some of the key ideas from a two-day NASA Aeronautics Research M...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>