Space

September 25, 2012

Lockheed Martin delivers propulsion core for the first GPS III satellite

The Lockheed Martin team developing the U.S. Air Force’s next generation Global Positioning System III satellites has delivered the first spacecraft’s propulsion core module to the company’s Denver-area GPS Processing Facility.

The milestone represents the program’s first major hardware delivery for GPS III Space Vehicle 1 and highlights the satellite’s initial Assembly, Integration and Test activities in the GPF.

The propulsion core contains the integrated propulsion system and serves as the structural backbone of the satellite. Developed and tested at Lockheed Martin’s Mississippi Space & Technology Center, the propulsion subsystem is essential for maneuvering the GPS III satellite during transfer orbit to its final location as well as conducting on-orbit repositioning maneuvers throughout its mission life.

“The delivery of the propulsion core demonstrates that this program is on firm footing and poised to deliver on its commitments,” said Lt Col Todd Caldwell, the U.S. Air Force’s GPS III program manager. “In this challenging budget environment, we are focused on efficient program execution to deliver critical new capabilities to GPS users worldwide.”

The propulsion system benefits from a Lockheed Martin initiative to improve the manufacturability of GPS III. The activity simplified plumbing routing and reduced welds by 25 percent compared to similar spacecraft, which results in significantly reduced cycle time and cost for all GPS III production satellites.

To reduce risk and overall program costs for the government, the team is first fielding a full-sized satellite prototype, known as the GPS III Non-Flight Satellite Testbed. The approach is used to identify and solve development issues prior to integration and test of the first GPS III satellite.

“Building on the lessons learned from our GNST pathfinder, we expect to execute a very smooth and efficient assembly, integration and test phase for the first GPS III satellite” said Jackson. “We are on track to deliver the first satellite for launch availability in 2014, and as we complete production pathfinding on the GNST and move into full scale satellite production, we expect to streamline our processes further, reduce risk, lower per unit costs and ensure mission success.”

The GPS III program will affordably replace aging GPS satellites while improving capability to meet the evolving demands of military, commercial and civilian users. GPS III satellites will deliver better accuracy and improved anti-jamming power while enhancing the spacecraft’s design life and adding a new civil signal designed to be interoperable with international global navigation satellite systems.

In 2008, Lockheed Martin was awarded the contract for the design, development and production of the GNST and the first two GPS III satellites, with priced options for up to 10 additional satellites. In early 2012, the Air Force exercised a $238 million option for production of the next two satellites, GPS III space vehicles three and four. The Air Force plans to purchase up to 32 GPS III satellites.

The GPS III team is led by the Global Positioning Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Lockheed Martin is the GPS III prime contractor with teammates ITT Exelis, General Dynamics, Infinity Systems Engineering, Honeywell, ATK and other subcontractors. Air Force Space Command’s 2nd Space Operations Squadron, based at Schriever Air Force Base, Colo., manages and operates the GPS constellation for both civil and military users.

 




All of this week's top headlines to your email every Friday.


 
 

 

Year in space starts for one American, one Russian

Three crew members representing the United States and Russia are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m., EDT, March 27. NASA astronaut Scott Kelly and Russian Federal Space Agency (Roscosmos) cosmonaut Mikhail Kornienko will spend about a year living and working aboard the...
 
 
NASA photograph

Orion parachute testing conducted at AEDC NFAC facility

AEDC engineers were part of a test team that performed wind tunnel testing on the parachutes for NASA Orion spacecraft in January. The test team also consisted of NASA, Airborne Systems, Jacobs Engineering and NFAC personnel. P...
 
 

Ninth Boeing GPS IIF reaches orbit, sends first signals

Boeing Global Positioning System (GPS) IIF satellites are steadily replenishing the orbiting constellation, continuing to improve reliability and accuracy for users around the world. The ninth GPS IIF reached orbit about three hours, 20 minutes after launching today aboard a United Launch Alliance (ULA) Delta IV rocket from Cape Canaveral Air Force Station, Fla., and...
 

 
NASA/JPL-Caltech photograph

NASA asteroid hunter spacecraft data available to public

NASA/JPL-Caltech photograph The NEOWISE spacecraft viewed comet C/2014 Q2 (Lovejoy) for a second time on January 30, 2015, as the comet passed through the closest point to our sun along its 14,000-year orbit, at a solar distanc...
 
 
NASA and ESA image

NASA’s Hubble, Chandra find clues that may help identify dark matter

NASA and ESA image Here are images of six different galaxy clusters taken with NASA’s Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when t...
 
 
SOFIA

SOFIA finds missing link between supernovae, planet formation

NASA/CXO/Herschel/VLA/Lau et al SOFIA data reveal warm dust (white) surviving inside a supernova remnant. The SNR Sgr A East cloud is traced in X-rays (blue). Radio emission (red) shows expanding shock waves colliding with surr...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>