Tech

October 18, 2012

Two Global Hawks fly in close formation, move AHR program closer to autonomous aerial refueling

NASA’s two Global Hawk unmanned aircraft, one with a refueling hose trailing behind, fly in close formation during the DARPA-Northrop Grumman UAV-to-UAV aerial refueling demonstration.

Northrop Grumman, the Defense Advanced Research Projects Agency and NASA Dryden Flight Research Center have successfully completed a series of flight demonstrations, moving DARPA’s Autonomous High-Altitude Refueling program closer to demonstrating the first autonomous aerial refueling between two unmanned, high-altitude aircraft.

The flights, which used two NASA Global Hawk unmanned aircraft – one configured as a tanker and the other as a receiver – were conducted at Edwards Air Force Base, Calif.

During the flights, which spanned Jan. 11 to May 30, the AHR team achieved many milestones, including:

 

  • The lead receiver aircraft extended and retracted its aerial refueling hose several times, completing all planned tests to validate the associated program hardware and software.
  • The trail tanker aircraft successfully demonstrated precision control in formation with manual and automated “breakaway” maneuvers – important safety features and criteria of the test program.
  • Two Global Hawk unmanned aircraft successfully flew for the first time in close formation – as close as 30 feet.
  • During the close-formation flight, the aircraft rendezvoused and flew for more than 2.5 hours under autonomous formation control, with the majority of the time within 100 feet (or one wingspan) of each other.

 

“The technical developments that enabled these two high-altitude, long-endurance unmanned Global Hawks in close formation is an outstanding accomplishment for the AHR program,” said Fred Ricker, vice president and deputy general manager for Northrop Grumman Aerospace Systems’ Advanced Programs & Technology. “Coupled with the advanced design and technical implementation of aerial refueling systems on board both aircraft, the demonstration has truly brought a concept to life, which has the potential to change the operations for unmanned aircraft utility and enable mission flexibility never before realized.”

Northrop Grumman and NASA Dryden Flight Research Center conducted several demonstration flights in the buildup to the close formation flight, which included tanker and receiver first flights and a distant formation flight. The Northrop Grumman-NASA-DARPA team worked closely to ensure that all safety precautions and measures were taken when preparing for and conducting all of the ground and flight demonstrations. Preparation included a calculated approach to ground and flight tests, which included extensive analysis, simulations, laboratory and ground tests as well as multiple safety review boards.

The $33 million DARPA AHR program aims to demonstrate autonomous fuel transfer between two Global Hawks, enabling flights of up to one week endurance. AHR is a follow-on to a 2006 DARPA Autonomous Aerial Refueling Demonstration, a joint effort with NASA Dryden that used an F/A-18 Hornet as a surrogate unmanned aircraft to autonomously refuel via a probe and drogue from a 707 tanker.

As part of the U.S. Navy’s Unmanned Combat Air System Carrier Demonstration program, Northrop Grumman is also developing AAR technology to help extend the operating range and flight duration of future carrier-based unmanned systems. The company plans to conduct AAR demonstrations in 2014 using the Navy’s X-47B unmanned demonstrator aircraft.

In partnership with NASA in the Space Act Agreement, Northrop Grumman supports the operations and maintenance of the two Global Hawks used in the AHR program and is responsible for all engineering design, as well as modification of both aircraft.

 




All of this week's top headlines to your email every Friday.


 
 

 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 
 
NASA/Boeing image

NASA wraps up first green aviation tests on Boeing ecoDemonstrator

NASA/Boeing image NASA’s recent green aviation tests included the Active Flow Control Enhanced Vertical Tail Flight Experiment, for which 31 tiny devices called sweeping jet actuators were installed on the tail of a Boein...
 

 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 
 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>