Tech

October 26, 2012

2012 Antarctic ozone hole second smallest in 20 years

The average area covered by the Antarctic ozone hole this year was the second smallest in the last 20 years, according to data from NASA and National Oceanic and Atmospheric Administration satellites.

Scientists attribute the change to warmer temperatures in the Antarctic lower stratosphere.

The ozone hole reached its maximum size Sept. 22, covering 8.2 million square miles (21.2 million square kilometers), or the area of the United States, Canada and Mexico combined. The average size of the 2012 ozone hole was 6.9 million square miles (17.9 million square kilometers). The Sept. 6, 2000 ozone hole was the largest on record at 11.5 million square miles (29.9 million square kilometers).

“The ozone hole mainly is caused by chlorine from human-produced chemicals, and these chlorine levels are still sizable in the Antarctic stratosphere,” said NASA atmospheric scientist Paul Newman of NASA’s Goddard Space Flight Center in Greenbelt, Md. “Natural fluctuations in weather patterns resulted in warmer stratospheric temperatures this year. These temperatures led to a smaller ozone hole.”

The ozone layer acts as Earth’s natural shield against ultraviolet radiation, which can cause skin cancer. The ozone hole phenomenon began making a yearly appearance in the early 1980s. The Antarctic ozone layer likely will not return to its early 1980s state until about 2065, Newman said. The lengthy recovery is because of the long lifetimes of ozone-depleting substances in the atmosphere. Overall atmospheric ozone no longer is declining as concentrations of ozone-depleting substances decrease. The decrease is the result of an international agreement regulating the production of certain chemicals.

This year also showed a change in the concentration of ozone over the Antarctic. The minimum value of total ozone in the ozone hole was the second highest level in two decades. Total ozone, measured in Dobson units, reached 124 DU on Oct. 1. NOAA ground-based measurements at the South Pole recorded 136 DU on Oct. 5. When the ozone hole is not present, total ozone typically ranges from 240-500 DU.

This is the first year growth of the ozone hole has been observed by an ozone-monitoring instrument on the Suomi National Polar-orbiting Partnership (NPP) satellite. The instrument, called the Ozone Mapping Profiler Suite, is based on previous instruments, such as the Total Ozone Mapping Spectrometer and the Solar Backscatter Ultraviolet instrument, which have flown on multiple satellites. OMPS continues a satellite record dating back to the early 1970s.

In addition to observing the annual formation and extent of the ozone hole, scientists hope OMPS will help them better understand ozone destruction in the middle and upper stratosphere with its Nadir Profiler. Ozone variations in the lower stratosphere will be measured with its Limb Profiler.

“OMPS Limb looks sideways, and it can measure ozone as a function of height,” said Pawan K. Bhartia, a NASA atmospheric physicist and OMPS Limb instrument lead. “This OMPS instrument allows us to more closely see the vertical development of Antarctic ozone depletion in the lower stratosphere where the ozone hole occurs.”

NASA and NOAA have been monitoring the ozone layer on the ground and with a variety of instruments on satellites and balloons since the 1970s. Long-term ozone monitoring instruments have included TOMS, SBUV/2, Stratospheric Aerosol and Gas Experiment series of instruments, the Microwave Limb Sounder, the Ozone Monitoring Instrument, and the OMPS instrument on Suomi NPP. Suomi NPP is a bridging mission leading to the next-generation polar-orbiting environmental satellites called the Joint Polar Satellite System, will extend ozone monitoring into the 2030s.

NASA and NOAA have a mandate under the Clean Air Act to monitor ozone-depleting gases and stratospheric depletion of ozone. NOAA complies with this mandate by monitoring ozone via ground and satellite measurements. The NOAA Earth System Research Laboratory in Boulder, Colo., performs the ground-based monitoring. The Climate Prediction Center performs the satellite monitoring.

 

To monitor the state of the ozone layer above Antarctica, visit http://ozonewatch.gsfc.nasa.gov.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 3, 2015

News Carter To China: US ‘Will Fly, Sail, Operate Wherever Law Allows’ Defense Secretary Ash Carter, in a speech billed as all about a new personnel approach for the Pentagon, laid out a clear line in the sand of the temporary islands the Chinese have been building. http://breakingdefense.com/2015/09/carter-to-china-us-will-fly-sail-operate-wherever-law-allows/ LRS-B details emerge: Major t...
 
 

News Briefs September 3, 2015

Soldier injured after parachute failed to deploy A soldier was injured during a U.S. Army Special Operations parachute training exercise in western Montana. Army officials at Fort Bragg, N.C., say 16 soldiers were conducting a free-fall parachute jump from two Blackhawk helicopters near Hamilton Aug. 31 when one soldier had an equipment malfunction and was...
 
 

Boeing, Jet2.com finalize order for 27 Next Generation 737-800s

Boeing and UK Leisure Airline Jet2.com have finalized an order for 27 Next Generation 737-800s, valued at approximately $2.6 billion at current list prices. Jet2.com currently operates an all-Boeing fleet of nearly 60 aircraft; however, this is the organization’s first direct Boeing order.† The aircraft will be used to take the company’s package holiday and...
 

 
boeing-emirates

Boeing, Emirates celebrate airline’s 150th 777 delivery

Boeing and Emirates Airline Sept. 3 celebrated the simultaneous delivery of three 777s — two 777-300ERs and one 777 Freighter — marking the entry of the 150th 777 into Emirates’ fleet. The delivery marks the first tim...
 
 

U.S. Air Force selects Chromalloy for F108 gas turbine engine module repairs

Chromalloy announced Sept. 2 that it has been selected by the U.S. Air Force to provide repairs on low pressure turbine modules for the F108 aircraft engine fleet, in a contract valued at up to $74 million. The one-year agreement was contracted by the Tinker Air Force Base in Oklahoma and includes four one-year options...
 
 
raytheon-colorado

Raytheon expanding in Colorado Springs

Raytheon will speed up growth of its Colorado Springs presence after signing a $700 million multi-year indefinite-delivery/indefinite-quantity contract to support operations at NORAD’s Cheyenne Mountain Complex. Under the...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>