In the news...

October 26, 2012

NASA Dryden F/A-18 to chase ‘FaINT’ sonic booms

NASA’s F/A-18B mission support aircraft 852 is pictured flying over the high desert near the Tehachapi Mountains northwest of Mojave, Calif. The aircraft will be flying a series of low-supersonic, high-altitude flight profiles during the Farfield Investigation of No Boom Threshold, or FaINT, flight research project at NASA Dryden.

NASA’s Supersonics Project will embark on its latest effort to soften sonic booms when a NASA F/A-18 aircraft takes to the air in a project called Farfield Investigation of No Boom Threshold, or FaINT, beginning in late October.

As the latest in a continuing progression of NASA supersonics research projects aimed at reducing or mitigating the effect of sonic booms, FaINT is designed to enable engineers to better understand evanescent waves, an acoustic phenomenon that occurs at the very edges or just outside of the normal sonic boom envelope.

For an aircraft flying at a supersonic speed of about Mach 1.2 or less at an altitude above 35,000 feet, the shockwaves being produced typically do not reach the ground, so no sonic boom is heard. This is because shockwaves from an aircraft flying supersonically at higher altitudes are refracted, or bent upwards, as they enter warmer air closer to the ground, due to the fact that the speed of sound increases with air temperature.

But when sonic booms curve upward they create a series of sonic boom waves that are focused along a line. This line is called a caustic line. The side of the caustic line opposite of the sonic boom waves is called the “shadow side,” where the evanescent waves are generated. This is the area that NASA researchers will study during FaINT.

“It’s exciting to help lead a new area in sonic boom flight research,” said Larry Cliatt, principal investigator for the FaINT flight project at NASA’s Dryden Flight Research Center. “We are investigating supersonic technology and research that is relatively raw in the modern sense. When overland supersonic commercial travel is commonplace, it will be efforts like this that helped get us there.”

The planned evanescent wave flights will occur over Edwards Air Force Base, Calif., where special microphone arrays placed on the southern portion of Rogers Dry Lake will again be the NASA Dryden researcher’s sensor of choice.

For the upcoming FaINT flight project, capturing the fleeting sounds of evanescent waves coming off sonic boom shockwaves will be a challenge. Similar to the shadow the sun creates behind a building, if some light were to still leak around the edges it would not get completely dark, but it would get darker the further you move away from the edge. Certain conditions and refractionscreate a similar “shadow side” of a sonic boom where evanescent waves are generated, sounding similar to distant thunder. These waves quickly fade and disappear, as supersonic shockwaves act similar to boat wakes on water,decreasing with distance.

“The FaINT team has been working hard on the development and design of the FaINTproject for the last six months,” said Brett Pauer, FaINT deputy project manager at NASA Dryden. “NASA, along with our seven industry and university partners, are ready to collect data and expand our collective knowledge of sonic boom propagation effects near the shadow side of them,” Pauer said.
Characterizing the effects of both normal and loud sonic booms in order to provide the data necessary for engineers to design future low-boom supersonic aircraft has required an amazing amount of work and tenacity by NASA engineers from the agency’s Dryden and Langley research centers, and industry partners as well.

Related sonic boom research projects preceding FaINT date back several years. Recent efforts include the Superboom Caustic Analysis and Measurement Program (SCAMP), which produced and measured amped-up, super-loud sonic booms, and the Waveforms and Sonic boom Perception and Response (WSPR) project, which gathered data from a select group of volunteer Edwards Air ForceBase residents on their individual perceptions of sonic booms produced by aircraft in supersonic flight over Edwards.

The overarching goal of NASA’s sonic boom reduction research is to shrink the sonic boom “footprint” in order to make commercial supersonic flight over land practical.

This research is funded by NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington, DC.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s futureĀ - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>