Tech

October 26, 2012

NASA selects early stage innovation proposals from 10 universities

NASA has selected 10 university-led proposals for study of innovative, early-stage space technologies designed to improve shielding from space radiation, spacecraft thermal management and optical systems.

The 1-year grants are worth approximately $250,000 each, with an additional year of research possible.

Each of these technology areas requires dramatic improvements over existing capabilities for future science and human exploration missions. Early stage, or low technology readiness level concepts, could mature into tools that solve the difficult challenges facing future NASA missions. The selected areas address the high-priority technical needs as identified by the National Research Council in its recent report “NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space.”

“NASA’s Space Technology Program is moving out on solving the cross-cutting technology challenges we face as we move beyond low-Earth orbit and head to an asteroid, Mars and beyond,” said Michael Gazarik the program’s director at NASA Headquarters in Washington. “Our science and human deep space missions need advancements in these technology areas to enable exploration of space. We’re excited and proud to partner with the best minds from American universities to take on these tough technical challenges.”

Universities selected for early stage innovation grants and the names of their proposals are:

  • Case Western Reserve University, Cleveland; “Heat rejection system for thermal management in space utilizing a planar variable-conductance heat pipe”
  • Colorado State University, Fort Collins; “Computational approaches for developing active radiation dosimeters for space applications based on new paradigms for risk assessment”
  • Georgia Institute of Technology, Atlanta; “Design and development of a next generation high capacity, light weight, 20-K pulse tube cryocooler for active thermal control on future space exploration missions”
  • Pennsylvania State University, University Park; “Integrated control electronics for adjustable X-ray optics”
  • Purdue University, West Lafayette, Ind.; “Adaptable single active loop thermal control system for future space missions”
  • University of Alabama in Huntsville; “Advanced scintillating fiber technology in high energy neutron spectrometers for exploration”
  • University of Arizona, Tucson; “Wavefront control for high performance coronagraphy on segmented and centrally obscured telescopes”
  • University of Houston; “High hydrogen content nanostructured polymer radiation protection system”
  • University of New Hampshire, Durham; “Small active readout device for dose spectra from energetic particles and neutrons (DoSEN)”
  • Oregon State University, Corvallis; “Enabling self-propelled condensate flow during phase-change heat rejection using surface texturing”

 

The selected efforts will explore new approaches to protect crews from ionizing space radiation and develop new technologies to measure and characterize the ionizing particle environment wherever humans may travel beyond Earth orbit.

Researchers also will explore technologies to greatly increase the capability to store cryogenic fluids and investigate heat rejection technologies capable of operating reliably and efficiently through a wide range of thermal conditions.

In addition, researchers will develop technologies that could lead to new classes of X-ray telescopes and explore techniques aimed at direct imaging and characterization of Earth-like planets orbiting other stars.

Second year funding for these grants will be contingent on technical progress and the availability of appropriated funds. The selections are part of NASA’s Space Technology Research Grants Program. The program is designed to accelerate the development of technologies originating from academia that support the future science and exploration needs of NASA, other government agencies and American industry. The program is part of NASA’s Space Technology Program, which is innovating, developing, testing, and flying technology for use in NASA’s future missions and the greater aerospace community.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s future - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>