Tech

October 26, 2012

NASA selects early stage innovation proposals from 10 universities

NASA has selected 10 university-led proposals for study of innovative, early-stage space technologies designed to improve shielding from space radiation, spacecraft thermal management and optical systems.

The 1-year grants are worth approximately $250,000 each, with an additional year of research possible.

Each of these technology areas requires dramatic improvements over existing capabilities for future science and human exploration missions. Early stage, or low technology readiness level concepts, could mature into tools that solve the difficult challenges facing future NASA missions. The selected areas address the high-priority technical needs as identified by the National Research Council in its recent report “NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space.”

“NASA’s Space Technology Program is moving out on solving the cross-cutting technology challenges we face as we move beyond low-Earth orbit and head to an asteroid, Mars and beyond,” said Michael Gazarik the program’s director at NASA Headquarters in Washington. “Our science and human deep space missions need advancements in these technology areas to enable exploration of space. We’re excited and proud to partner with the best minds from American universities to take on these tough technical challenges.”

Universities selected for early stage innovation grants and the names of their proposals are:

  • Case Western Reserve University, Cleveland; “Heat rejection system for thermal management in space utilizing a planar variable-conductance heat pipe”
  • Colorado State University, Fort Collins; “Computational approaches for developing active radiation dosimeters for space applications based on new paradigms for risk assessment”
  • Georgia Institute of Technology, Atlanta; “Design and development of a next generation high capacity, light weight, 20-K pulse tube cryocooler for active thermal control on future space exploration missions”
  • Pennsylvania State University, University Park; “Integrated control electronics for adjustable X-ray optics”
  • Purdue University, West Lafayette, Ind.; “Adaptable single active loop thermal control system for future space missions”
  • University of Alabama in Huntsville; “Advanced scintillating fiber technology in high energy neutron spectrometers for exploration”
  • University of Arizona, Tucson; “Wavefront control for high performance coronagraphy on segmented and centrally obscured telescopes”
  • University of Houston; “High hydrogen content nanostructured polymer radiation protection system”
  • University of New Hampshire, Durham; “Small active readout device for dose spectra from energetic particles and neutrons (DoSEN)”
  • Oregon State University, Corvallis; “Enabling self-propelled condensate flow during phase-change heat rejection using surface texturing”

 

The selected efforts will explore new approaches to protect crews from ionizing space radiation and develop new technologies to measure and characterize the ionizing particle environment wherever humans may travel beyond Earth orbit.

Researchers also will explore technologies to greatly increase the capability to store cryogenic fluids and investigate heat rejection technologies capable of operating reliably and efficiently through a wide range of thermal conditions.

In addition, researchers will develop technologies that could lead to new classes of X-ray telescopes and explore techniques aimed at direct imaging and characterization of Earth-like planets orbiting other stars.

Second year funding for these grants will be contingent on technical progress and the availability of appropriated funds. The selections are part of NASA’s Space Technology Research Grants Program. The program is designed to accelerate the development of technologies originating from academia that support the future science and exploration needs of NASA, other government agencies and American industry. The program is part of NASA’s Space Technology Program, which is innovating, developing, testing, and flying technology for use in NASA’s future missions and the greater aerospace community.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>