Tech

October 31, 2012

Army researchers link ground robots for collaborative autonomy

Jason Gregory and Jeffrey Twigg, both of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, use their robotics expertise to explore ways to best operate autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.

Four U.S. Army Research Laboratory researchers have developed an algorithm that will make it easier for the Department of Defense to maintain wirelessly networked Army PackBots and other military assets using radio communications.

The team recently demonstrated they could map the region of good connectivity to a radio base station using received signal strength.

Jeffrey Twigg of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate tests an Army PackBot’s connectivity to a radio base station using signal strength on Sept. 18 at the U.S. Army Research Laboratory in Adelphi, Md.

“We are working on fundamental techniques that employ autonomous agents to maintain connectivity, and continuously provide situational awareness to Soldiers,” said Dr. Brian Sadler of ARL’s Computational and Information Sciences Directorate in a recent article about the research.

The team has been focused on radio connectivity between robots for nearly two years, he said.

“We can find and explore areas that have high RSS and then map these areas as having the strongest connectivity to the radio base station,” said Jeffrey Twigg, a contract employee with ARL’s Computational and Information Sciences Directorate who was instrumental in this research. “This brings us a step closer to operating autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.”

When the environment is open, communication between autonomous robots is well understood. Indoors however, walls and other sources of interference cause radio propagation to be more complex. This requires the communication strategies used by robotic systems to be more complex, Twigg said.

“Ultimately we want to form building blocks that increase the effectiveness of a networked team of robots in an unknown environment,” Twigg said. “If robots can be programmed to map where there is the potential to communicate inside a building, then Soldiers and other assets can know where in the building they will be able to communicate with a radio base station.”

Efficient Base Station Connectivity Region Discovery by Jeffrey Twigg, Dr. Jonathan Fink, Dr. Paul Yu and Dr. Brian Sadler is a project that takes a second step toward a broad understanding of solutions for Army robotics. The study has been submitted for publication by the International Journal of Robotics Research.

The researchers took their findings from earlier research conducted this year to the next level. They combined region decomposition and RSS sampling to form an efficient graph search. The nominal RSS in a sampling region is obtained by averaging local RSS samples to reduce the small scale fading variation.

At this point, the system has been tested in the lab as well as at the MOUT site at Fort Indiantown Gap.

The algorithm can be used for sensing and collaborative autonomy within the region of base station connectivity, Twigg said.
The ARL researchers first presented the development: RSS Gradient-Assisted Frontier Exploration and Radio Source Localization at the 2012 International Conference on Robotics and Automation in St. Paul, Minn.




All of this week's top headlines to your email every Friday.


 
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAís associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 

 

Report: Major federal lab misused contract funds

Managers at one of the nation’s premier federal laboratories improperly used taxpayer funds to influence members of Congress and other officials as part of an effort to extend the lab’s $2.4 billion management contract, the U.S. Department of Energy’s Office of Inspector General said in a report Nov. 12. A review of documents determined that...
 
 

Teams announced for NASA 2015 robotics operations competition

Eight universities have advanced to the next round of “RASC-AL Robo-Ops,” a planetary rover robotics engineering competition sponsored by NASA and organized by the National Institute of Aerospace. The teams selected are California State University Long Beach, Massachusetts Institute of Technology, Cambridge; San Jose State University in California; University of Buffalo in New York;...
 
 
NASA photograph by Ken Ulbrich

NASA tests revolutionary shape changing aircraft flap for first time

NASA photograph by Ken Ulbrich For taxi testing Oct. 31, 2014, at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., the Adaptive Compliant Trailing Edge flap was extended to 20 degrees deflection. Fli...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>