Tech

October 31, 2012

Army researchers link ground robots for collaborative autonomy

Jason Gregory and Jeffrey Twigg, both of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, use their robotics expertise to explore ways to best operate autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.

Four U.S. Army Research Laboratory researchers have developed an algorithm that will make it easier for the Department of Defense to maintain wirelessly networked Army PackBots and other military assets using radio communications.

The team recently demonstrated they could map the region of good connectivity to a radio base station using received signal strength.

Jeffrey Twigg of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate tests an Army PackBot’s connectivity to a radio base station using signal strength on Sept. 18 at the U.S. Army Research Laboratory in Adelphi, Md.

“We are working on fundamental techniques that employ autonomous agents to maintain connectivity, and continuously provide situational awareness to Soldiers,” said Dr. Brian Sadler of ARL’s Computational and Information Sciences Directorate in a recent article about the research.

The team has been focused on radio connectivity between robots for nearly two years, he said.

“We can find and explore areas that have high RSS and then map these areas as having the strongest connectivity to the radio base station,” said Jeffrey Twigg, a contract employee with ARL’s Computational and Information Sciences Directorate who was instrumental in this research. “This brings us a step closer to operating autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.”

When the environment is open, communication between autonomous robots is well understood. Indoors however, walls and other sources of interference cause radio propagation to be more complex. This requires the communication strategies used by robotic systems to be more complex, Twigg said.

“Ultimately we want to form building blocks that increase the effectiveness of a networked team of robots in an unknown environment,” Twigg said. “If robots can be programmed to map where there is the potential to communicate inside a building, then Soldiers and other assets can know where in the building they will be able to communicate with a radio base station.”

Efficient Base Station Connectivity Region Discovery by Jeffrey Twigg, Dr. Jonathan Fink, Dr. Paul Yu and Dr. Brian Sadler is a project that takes a second step toward a broad understanding of solutions for Army robotics. The study has been submitted for publication by the International Journal of Robotics Research.

The researchers took their findings from earlier research conducted this year to the next level. They combined region decomposition and RSS sampling to form an efficient graph search. The nominal RSS in a sampling region is obtained by averaging local RSS samples to reduce the small scale fading variation.

At this point, the system has been tested in the lab as well as at the MOUT site at Fort Indiantown Gap.

The algorithm can be used for sensing and collaborative autonomy within the region of base station connectivity, Twigg said.
The ARL researchers first presented the development: RSS Gradient-Assisted Frontier Exploration and Radio Source Localization at the 2012 International Conference on Robotics and Automation in St. Paul, Minn.




All of this week's top headlines to your email every Friday.


 
 

 
NASA JPL image

NASA analysis: 11 trillion gallons to replenish California drought losses

NASA JPL image NASA satellite data reveal the severity of California’s drought on water resources across the state. This map shows the trend in water storage between September 2011 and September 2014. It will take about 11 tr...
 
 
NASA photograph by George Hale

NASA’s IceBridge Antarctic campaign wraps up

NASA photograph by George Hale A view from an IceBridge survey flight Nov. 3, 2014, showing a cloud’s shadow on crevassed Antarctic ice. NASA’s Operation IceBridge recently completed its 2014 Antarctic campaign, marking the...
 
 

NASA’s 2014 HS3 hurricane mission investigated four tropical cyclones

NASA photograph NASA’s Global Hawk takes off into the sunset after mission wrap-up at NASA Wallops and heads back to NASA Armstrong. NASA’s Hurricane and Severe Storms Sentinel, or HS3, mission investigated four tropical cyclones in the 2014 Atlantic Ocean hurricane season: Cristobal, Dolly, Edouard and Gonzalo. The storms affected land areas in the Atlantic...
 

 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 
 
nasa-app-challenge

Help U.S. cope with climate change: Enter NASA-USGS data app challenge

NASA in partnership with the U.S. Geological Survey is offering more than $35,000 in prizes to citizen scientists for ideas that make use of climate data to address vulnerabilities faced by the United States in coping with clim...
 
 
dryden-social3

Event introduces attendees to NASA’s aviation contributions

  NASA is transforming aviation by reducing aircraft environmental impacts, enhancing safety and leading the way in revolutionary new technologies. Those are some of the key ideas from a two-day NASA Aeronautics Research M...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>