Space

October 31, 2012

NASA rover’s first soil studies help fingerprint Martian minerals

NASA’s Mars rover Curiosity has completed initial experiments showing the mineralogy of Martian soil is similar to weathered basaltic soils of volcanic origin in Hawaii.

The minerals were identified in the first sample of Martian soil ingested recently by the rover. Curiosity used its Chemistry and Mineralogy instrument (CheMin) to obtain the results, which are filling gaps and adding confidence to earlier estimates of the mineralogical makeup of the dust and fine soil widespread on the Red Planet.

“We had many previous inferences and discussions about the mineralogy of Martian soil,” said David Blake of NASA Ames Research Center in Moffett Field, Calif., who is the principal investigator for CheMin. “Our quantitative results provide refined and in some cases new identifications of the minerals in this first X-ray diffraction analysis on Mars.”

The identification of minerals in rocks and soil is crucial for the mission’s goal to assess past environmental conditions. Each mineral records the conditions under which it formed. The chemical composition of a rock provides only ambiguous mineralogical information, as in the textbook example of the minerals diamond and graphite, which have the same chemical composition, but strikingly different structures and properties.

CheMin uses X-ray diffraction, the standard practice for geologists on Earth using much larger laboratory instruments. This method provides more accurate identifications of minerals than any method previously used on Mars. X-ray diffraction reads minerals’ internal structure by recording how their crystals distinctively interact with X-rays. Innovations from Ames led to an X-ray diffraction instrument compact enough to fit inside the rover.

These NASA technological advances have resulted in other applications on Earth, including compact and portable X-ray diffraction equipment for oil and gas exploration, analysis of archaeological objects and screening of counterfeit pharmaceuticals, among other uses.

“Our team is elated with these first results from our instrument,” said Blake. “They heighten our anticipation for future CheMin analyses in the months and miles ahead for Curiosity.”

The specific sample for CheMin’s first analysis was soil Curiosity scooped up at a patch of dust and sand that the team named Rocknest. The sample was processed through a sieve to exclude particles larger than 0.006 inch (150 micrometers), roughly the width of a human hair. The sample has at least two components: dust distributed globally in dust storms and fine sand originating more locally. Unlike conglomerate rocks Curiosity investigated a few weeks ago, which are several billion years old and indicative of flowing water, the soil material CheMin has analyzed is more representative of modern processes on Mars.

“Much of Mars is covered with dust, and we had an incomplete understanding of its mineralogy,” said David Bish, CheMin co-investigator with Indiana University in Bloomington. “We now know it is mineralogically similar to basaltic material, with significant amounts of feldspar, pyroxene and olivine, which was not unexpected. Roughly half the soil is non-crystalline material, such as volcanic glass or products from weathering of the glass.”

Bish said, “So far, the materials Curiosity has analyzed are consistent with our initial ideas of the deposits in Gale Crater recording a transition through time from a wet to dry environment. The ancient rocks, such as the conglomerates, suggest flowing water, while the minerals in the younger soil are consistent with limited interaction with water.”

During the two-year prime mission of the Mars Science Laboratory Project, researchers are using Curiosity’s 10 instruments to investigate whether areas in Gale Crater ever offered environmental conditions favorable for microbial life. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the project for NASA’s Science Mission Directorate, Washington, and built Curiosity and CheMin.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 23, 2015

News: Two Marines identified in deadly California helo crash - Two Marine Corps officers killed when their helicopter crashed during a training exercise in the Southern California desert were remembered Jan. 25 as talented pilots. Greek F-16 crashes in Spain during NATO exercise - Ten people died Jan. 26 after a Greek air force F-16 jet crashed...
 
 

News Briefs January 26, 2015

Navy wants to increase use of sonar-emitting buoys The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales. The Navy now wants to deploy up to 720 sonobuoys about 12 miles off...
 
 
Air National Guard photograph by SSgt. Annie Edwards

ANG conducts air refueling training with NATO allies in Germany

Air National Guard photograph by SSgt. Annie Edwards A NATO E-3A AWACS aircraft approaches a Utah Air National Guard KC-135R Stratotanker for air refueling during a training flight over Germany on Jan. 13, 2015. Nearly 30 airme...
 

 
Air Force photograph by SrA. Armando A. Schwier-Morales

Ramstein Airmen train with French air force

Air Force photograph by SrA. Armando A. Schwier-Morales Two U.S. Air Force pilots and a French air force navigator discuss the route to the drop zone during a simulated low-level drop Jan. 21, 2015, at Orleans – Bricy Air...
 
 

Marines receive first F-35C Lightning II carrier variant

The first F-35C Lightning II, carrier variant, for the U.S. Marine Corps touched-down on the flight line at Eglin Air Force Base, Fla., Jan. 13, from the Lockheed Martin plant in Fort Worth, Texas, to begin training in support of carrier-based operations. U.S. Marine Lt. Col. J.T. Ryan, Marine Fighter Attack Squadron 501 detachment commander...
 
 

VA announces single regional framework under MyVA initiative

The Department of Veterans Affairs announced Jan. 26 that it is taking the first steps under the MyVA initiative to realign its many organizational maps into one map with five regions to better serve Veterans. The new regions under the MyVA alignment will allow VA to begin the process of integrating disparate organizational boundaries into...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>