Space

November 2, 2012

SpaceX transitions to third commercial crew phase with NASA

Space Exploration Technologies has completed its first three performance milestones for NASA’s Commercial Crew Integrated Capability initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers.

During the company’s first milestone, a technical baseline review, NASA and SpaceX reviewed the Dragon spacecraft and Falcon 9 rocket for crew transportation to low-Earth orbit and discussed future plans for ground operations for crewed flights. The second milestone included a review of the company’s plan to achieve the CCiCap milestones established during SpaceX’s $440 million Space Act Agreement. SpaceX also presented the company’s financial resources to support its co-investment in CCiCap.
At the company’s headquarters in Hawthorne, Calif., on Oct. 29, SpaceX presented techniques it will use to design, build and test its integrated system during the third milestone, called an integrated systems requirements review. The company also provided NASA with the initial plans it would use for managing ground operations, launch, ascent, in-orbit operations, re-entry and landing should they begin transporting crews.

“These initial milestones are just the beginning of a very exciting endeavor with SpaceX.” said Ed Mango, NASA’s Commercial Crew Program manager. “We expect to see significant progress from our three CCiCap partners in a fairly short amount of time.”
SpaceX also has completed its Space Act Agreement with NASA for the Commercial Crew Development Round 2 initiative, the development phase that preceded CCiCap. During CCDev2, the company designed, developed and tested components of a launch abort system. A large hypergolic engine named SuperDraco would propel the Dragon spacecraft away from its rocket to save the crew from a disastrous event during launch or ascent. SpaceX also built a rocket engine test stand for developing an abort system. Engineers from NASA and SpaceX analyzed the trajectories, loads and dynamics the spacecraft would experience as it separates from a failing rocket.

“Our NASA team brought years of experience to the table and shared with SpaceX what components, systems, techniques and processes have worked for the agency’s human space transportation systems in the past and why they’ve worked,” said Jon Cowart, NASA’s SpaceX partner manager during CCDev2. “This sharing of experience benefitted both NASA and the company, and is creating a more dependable system at an accelerated pace.”

SpaceX is one of three U.S. companies NASA is working with during CCiCap to set the stage for a crewed orbital demonstration mission around the middle of the decade. SpaceX already is executing a contract with NASA for 12 cargo resupply missions to the International Space Station.

“The Dragon spacecraft has successfully delivered cargo to the space station twice this year, and SpaceX is well under way toward upgrading Dragon to transport astronauts as well,” said SpaceX President Gwynne Shotwell.

Future development and certification initiatives eventually will lead to the availability of human spaceflight services for NASA to send its astronauts to the International Space Station, where critical research is taking place daily.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 
NASA photograph

NASA announces new opportunities for public participation in asteroid grand challenge

NASA photograph Team NOVA Took the Winning Hackathon Prize.   Ten new projects are providing opportunities for the public to participate in NASA’s Asteroid Grand Challenge, which accelerates the agency’s astero...
 
 
XCOR Aerospace photograph by Mike Massee

XCOR Aerospace announces latest milestone in ULA program

XCOR Aerospace photograph by Mike Massee The XCOR-ULA XR-5H25 LOX-Hydrogen Rocket Engine, fed by XCOR’s proprietary rocket propellant piston pump technology. MOJAVE, Calif. XCOR Aerospace announced Nov. 20 it has complete...
 

 

New crew arrives at space station to continue scientific research

Three new crew members representing the United States, Russia and Italy are at the International Space Station. The Soyuz TMA-15M vehicle docked to the International Space Station at 9:48 p.m., EST, above the Pacific Ocean, approaching the coast of Ecuador. Terry Virts of NASA, Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos)...
 
 
NASA image by Eric Stern

NASA announces early stage innovations space tech research grants

NASA image by Eric Stern Advanced thermal protection materials modeling using the Direct Simulation Monte Carlo (DSMC) method simulates the flow through porous TPS materials. Research into these sorts of advanced technologies e...
 
 

NASA awards launch services contract for Ionospheric Connection Explorer

NASA has selected Orbital Sciences Corporation of Dulles, Va., to provide launch services for the Ionospheric Connection Explorer mission. ICON is targeted to launch in June 2017 from the Reagan Test Site on Kwajalein Atoll in the Republic of the Marshall Islands aboard a Pegasus XL launch vehicle from Orbital’s “Stargazer” L-1011 aircraft. The total...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>