Space

November 5, 2012

NASA’s Curiosity rover provides clues to changes In Martian atmosphere

NASA’s car-sized rover, Curiosity, has taken significant steps toward understanding how Mars may have lost much of its original atmosphere.

Learning what happened to the Martian atmosphere will help scientists assess whether the planet ever was habitable. The present atmosphere of Mars is 100 times thinner than Earth’s.

A set of instruments aboard the rover has ingested and analyzed samples of the atmosphere collected near the “Rocknest” site in Gale Crater where the rover is stopped for research. Findings from the Sample Analysis at Mars (SAM) instruments suggest that loss of a fraction of the atmosphere, resulting from a physical process favoring retention of heavier isotopes of certain elements, has been a significant factor in the evolution of the planet. Isotopes are variants of the same element with different atomic weights.

Initial SAM results show an increase of 5 percent in heavier isotopes of carbon in the atmospheric carbon dioxide compared to estimates of the isotopic ratios present when Mars formed. These enriched ratios of heavier isotopes to lighter ones suggest the top of the atmosphere may have been lost to interplanetary space. Losses at the top of the atmosphere would deplete lighter isotopes. Isotopes of argon also show enrichment of the heavy isotope, matching previous estimates of atmosphere composition derived from studies of Martian meteorites on Earth.

Scientists theorize that in Mars’ distant past its environment may have been quite different, with persistent water and a thicker atmosphere. NASA’s Mars Atmosphere and Volatile Evolution, or MAVEN, mission will investigate possible losses from the upper atmosphere when it arrives at Mars in 2014.

With these initial sniffs of Martian atmosphere, SAM also made the most sensitive measurements ever to search for methane gas on Mars. Preliminary results reveal little to no methane. Methane is of interest as a simple precursor chemical for life. On Earth, it can be produced by either biological or non-biological processes.

Methane has been difficult to detect from Earth or the current generation of Mars orbiters because the gas exists on Mars only in traces, if at all. The Tunable Laser Spectrometer (TLS) in SAM provides the first search conducted within the Martian atmosphere for this molecule. The initial SAM measurements place an upper limit of just a few parts methane per billion parts of Martian atmosphere, by volume, with enough uncertainty that the amount could be zero.

“Methane is clearly not an abundant gas at the Gale Crater site, if it is there at all. At this point in the mission we’re just excited to be searching for it,” said SAM TLS lead Chris Webster of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “While we determine upper limits on low values, atmospheric variability in the Martian atmosphere could yet hold surprises for us.”

In Curiosity’s first three months on Mars, SAM has analyzed atmosphere samples with two laboratory methods. One is a mass spectrometer investigating the full range of atmospheric gases. The other, TLS, has focused on carbon dioxide and methane.
During its two-year prime mission, the rover also will use an instrument called a gas chromatograph that separates and identifies gases. The instrument also will analyze samples of soil and rock, as well as more atmosphere samples.

“With these first atmospheric measurements we already can see the power of having a complex chemical laboratory like SAM on the surface of Mars,” said SAM Principal Investigator Paul Mahaffy of NASA’s Goddard Space Flight Center in Greenbelt, Md. “Both atmospheric and solid sample analyses are crucial for understanding Mars’ habitability.”

SAM is set to analyze its first solid sample in the coming weeks, beginning the search for organic compounds in the rocks and soils of Gale Crater. Analyzing water-bearing minerals and searching for and analyzing carbonates are high priorities for upcoming SAM solid sample analyses.

Researchers are using Curiosity’s 10 instruments to investigate whether areas in Gale Crater ever offered environmental conditions favorable for microbial life. JPL manages the project for NASA’s Science Mission Directorate in Washington. The SAM Instrument was developed at Goddard with instrument contributions from Goddard, JPL and the University of Paris in France.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Fourth Lockheed Martin-built MUOS secure comm satellite shipped

Lockheed Martin photograph On June 28, MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System secure communications network, shipped to Cape Canaveral from Lockheed Martin’s satellite manu...
 
 
Photograph courtesy of NASA/CXC/U. Wisconsin/S. Heinz

NASA’s Chandra captures x-ray echoes pinpointing distant neutron star

Photograph courtesy of NASA/CXC/U. Wisconsin/S. Heinz A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the...
 
 

Veteran NASA spacecraft nears 60,000th lap around Mars

NASA’s Mars Odyssey spacecraft will reach a major milestone June 23, when it completes its 60,000th orbit since arriving at the Red Planet in 2001. Named after the bestselling novel “2001: A Space Odyssey” by Arthur C. Clarke, Odyssey began orbiting Mars almost 14 years ago, on Oct. 23, 2001. On Dec. 15, 2010, it...
 

 
nasa-study

NASA selects six wild ideas in aviation for further study

NASA has selected six proposals to study transformative ideas that might expand what’s possible in aviation, shifting the boundary between fantastic and futuristic. During a day-long meeting in April, 17 teams pitched the...
 
 
NASA photograph

NASA signs agreement with Space Florida to operate historic landing facility

NASA photograph This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wi...
 
 

All systems go for NASA’s mission to Jupiter moon Europa

Beyond Earth, Jupiter’s moon Europa is considered one of the most promising places in the solar system to search for signs of present-day life, and a new NASA mission to explore this potential is moving forward from concept review to development. NASA’s mission concept — to conduct a detailed survey of Europa and investigate its...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>