Tech

November 7, 2012

Night or day, rain or shine DARPA seeks multi-band, portable sensor to provide clear imagery to war fighters


It is often the case with new military technologies that war fighters need to adjust to their equipment to access needed capabilities.

As missions shift, however, and warfighters are required to work in smaller teams and access more remote locations, it is technology that must adapt if it is to remain useful.

Desirable features for many new man-portable systems include small size, light weight, minimal power consumption, low cost, ease of use, multi-functionality and, to the extent possible, network friendliness.

DARPA created the Pixel Network for Dynamic Visualization program, or PIXNET, to apply these features to the cameras and sensors used by dismounted warfighters and small combat units for battlefield awareness and threat detection and identification. PIXNET aims to develop helmet-mounted and clip-on camera systems that combine visible, near infrared, and infrared sensors into one system and aggregate the outputs. PIXNET technology would ingest the most useful data points from each component sensor and fuse them into a common, information-rich image that can be viewed on the warfighter’s heads-up display, and potentially be shared across units.

The base technologies DARPA proposes to use already exist and are currently used by warfighters. However, these devices typically have dedicated functionality, operate independently of one another and provide value only to the immediate operator. Through PIXNET, DARPA seeks to fuse the capabilities of these devices into a single multi-band system, thus alleviating physical overburdening of warfighters, and develop a tool that is network-ready, capable of sharing imagery with other war fighters.

“Existing sensor technologies are a good jumping-off point, but PIXNET will require innovations to combine reflective and thermal bands for maximum visibility during the day or night, and then package this technology for maximum portability. What we really need are breakthroughs in aperture design, focal plane arrays, electronics, packaging and materials science,” said Nibir Dhar, DARPA program manager for PIXNET. “Success will be measured as the minimization of size, weight, power and cost of the system and the maximization of functionality.”

To help boost processing power while minimizing size and energy use, PIXNET sensors will interface wirelessly with an Android-based smart phone for fusing images and for networking among units. Although the primary focus of PIXNET is on sensor development, proposers are instructed to develop whatever apps are necessary to achieve the desired functionality for phone and camera.

In addition to technological innovation, proposers are encouraged to develop plans for transitioning the low-cost camera system into manufacturing. In the case of the helmet-mounted system, DARPA’s preferred cost goal in a manufacturing environment producing 10,000 units per month is $3,300 per unit.

For more information on PIXNET, visit https://www.fbo.gov/index?s=opportunity&mode=form&id=6bca8b710332b6467f92fcf717d68875&tab=core&_cview=0.




All of this week's top headlines to your email every Friday.


 
 

 
nasa-flying-lab

NASA’s flying laboratories study our world

Throughout the remainder of 2014, NASA is flying a series of airborne research campaigns from the North Pole to the South Pole and many points in between ñ to take a closer look at U.S. air quality, hurricanes in the Atlantic ...
 
 

NASA selects proposals to increase STEM education at community, technical colleges

NASA’s Office of Education will award more than $17.3 million through the National Space Grant and Fellowship Program to increase student and faculty engagement in science, technology, engineering and mathematics at community colleges and technical schools across the United States. Each award has a two-year performance period and a maximum value of $500,000. The 35...
 
 
Courtesy photograph

Space technology experiments tested in microgravity flight

Courtesy photograph University of Central Florida students and their principal investigator observe their experiment as it reacts to the microgravity environment on NASA’s C-9 reduced-gravity experiments aircraft. NASA...
 

 
NASA photograph by Tom Tschida

Seeing double: Experimental glider, rocket undergo fit checks

NASA photograph by Tom Tschida NASA intern Erik Rossi De La Fuente (upper left) admires the one-third scale, twin-fuselage sailplane concept demonstrator that will carry and launch the Whittinghill Aerospace Mini Sprite rocket....
 
 
Image courtesy of NASA/JPL/Corby Waste

NASA selects U.S. small business technology transfer projects for further development

Image courtesy of NASA/JPL/Corby Waste An artist’s rendition of the 2007 Phoenix Mars probe during landing depicts dust particles stirred up from thrusters. CFD Research Corporation, in conjunction with the University of ...
 
 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>