Defense

November 9, 2012

Army researchers link ground robots wirelessly

Jason Gregory and Jeffrey Twigg, both of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, use their robotics expertise to explore ways to best operate autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.

Four U.S. Army Research Laboratory researchers have developed an algorithm that will make it easier for the Department of Defense to maintain wirelessly networked Army PackBots and other military assets using radio communications.

The team recently demonstrated they could map the region of good connectivity to a radio base station using received signal strength, or RSS.

“We are working on fundamental techniques that employ autonomous agents to maintain connectivity, and continuously provide situational awareness to soldiers,” said Brian Sadler, Ph.D., of Army Research Laboratory’s Computational and Information Sciences Directorate, in a recent article about the research.

The team has been focused on radio connectivity between robots for nearly two years, he said.

“We can find and explore areas that have high RSS and then map these areas as having the strongest connectivity to the radio base station,” said Jeffrey Twigg, a contract employee with Army Research Laboratory’s Computational and Information Sciences Directorate who was instrumental in this research. “This brings us a step closer to operating autonomous systems in complex and unstructured situations like those Soldiers encounter on the battlefield.”

When the environment is open, communication between autonomous robots is well understood. Indoors however, walls and other sources of interference cause radio propagation to be more complex. This requires the communication strategies used by robotic systems to be more complex, Twigg said.

Jeffrey Twigg, with the U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, tests an Army PackBot’s connectivity to a radio base station using signal strength, Sept. 18, 2012, at the U.S. Army Research Laboratory in Adelphi, Md.

“Ultimately we want to form building blocks that increase the effectiveness of a networked team of robots in an unknown environment,” Twigg said. “If robots can be programmed to map where there is the potential to communicate inside a building, then soldiers and other assets can know where in the building they will be able to communicate with a radio base station.”

Efficient Base Station Connectivity Region Discovery by Jeffrey Twigg, Jonathan Fink, Ph.D., Paul Yu, Ph.D., and Brian Sadler, Ph.D., is a project that takes a second step toward a broad understanding of solutions for Army robotics. The study has been submitted for publication by the International Journal of Robotics Research.

The researchers took their findings from earlier research conducted this year to the next level. They combined region decomposition and RSS sampling to form an efficient graph search. The nominal RSS in a sampling region is obtained by averaging local RSS samples to reduce the small scale fading variation.

At this point, the system has been tested in the lab as well as at the urban operations training site at Fort Indiantown Gap.

The algorithm can be used for sensing and collaborative autonomy within the region of base station connectivity, Twigg said.

The Army Research Laboratory researchers first presented the development: RSS Gradient-Assisted Frontier Exploration and Radio Source Localization at the 2012 International Conference on Robotics and Automation in St. Paul, Minn.

 




All of this week's top headlines to your email every Friday.


 
 

 
Army photograph by Charles Kennedy

New CT scanner finds diverse, important uses for researchers

Army photograph by Charles Kennedy Turning a now-standard tool for medical diagnostics and therapeutics to a host of new applications, the U. S. Army Research Laboratory’s Survivability/Lethality Analysis Directorate rece...
 
 
Army photograph by David Kamm

Chow from a 3-D printer? Natick researchers are working on it

Army photograph by David Kamm Natick food technologists already believe they serve up the best food science can offer. Now they are working to incorporate 3-D printing technology into foods for the war fighter. Army researchers...
 
 
Air Force photograph by A1C Alexander Guerrero

Weapons School students get first look at upgraded B-1s

Air Force photograph by A1C Alexander Guerrero Maj. Brad Weber checks a screen that displays diagnostic information May 7, 2014, at Dyess Air Force Base, Texas. The IBS is a combination of three different upgrades, which includ...
 

 
arnold-a10

A-10 ‘Warthog’ tested in 16-T

Air Force photograph A model of an A-10 Thunderbolt II, more commonly known as “The Warthog” due to its unique shape, recently underwent a pressure-sensitive paint (PSP) test in Arnold Engineering Development Complex’s 16...
 
 
Untitled-1

F-15E takes first flight with new radar system

Air Force photograph by Jamie Hunter/Air Force graphic by TSgt. Samuel Morse The first 389th Fighter Squadron F-15E Strike Eagle received a Radar Modernization Program upgrade at Mountain Home Air Force Base, Idaho in June. The...
 
 
Photograph courtesy of Alan Walters

45th Space Wing launches ORBCOMM satellites

Photograph courtesy of Alan Walters The 45th Space Wing supported Space Exploration Technologies’ successfully launches a Falcon 9 rocket carrying six second-generation ORBCOMM communications satellites July 14, 2014, fro...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>