Defense

November 9, 2012

Army researchers link ground robots wirelessly

Jason Gregory and Jeffrey Twigg, both of U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, use their robotics expertise to explore ways to best operate autonomous systems in complex and unstructured situations like those soldiers encounter on the battlefield.

Four U.S. Army Research Laboratory researchers have developed an algorithm that will make it easier for the Department of Defense to maintain wirelessly networked Army PackBots and other military assets using radio communications.

The team recently demonstrated they could map the region of good connectivity to a radio base station using received signal strength, or RSS.

“We are working on fundamental techniques that employ autonomous agents to maintain connectivity, and continuously provide situational awareness to soldiers,” said Brian Sadler, Ph.D., of Army Research Laboratory’s Computational and Information Sciences Directorate, in a recent article about the research.

The team has been focused on radio connectivity between robots for nearly two years, he said.

“We can find and explore areas that have high RSS and then map these areas as having the strongest connectivity to the radio base station,” said Jeffrey Twigg, a contract employee with Army Research Laboratory’s Computational and Information Sciences Directorate who was instrumental in this research. “This brings us a step closer to operating autonomous systems in complex and unstructured situations like those Soldiers encounter on the battlefield.”

When the environment is open, communication between autonomous robots is well understood. Indoors however, walls and other sources of interference cause radio propagation to be more complex. This requires the communication strategies used by robotic systems to be more complex, Twigg said.

Jeffrey Twigg, with the U.S. Army Research Laboratory’s Computational and Information Sciences Directorate, tests an Army PackBot’s connectivity to a radio base station using signal strength, Sept. 18, 2012, at the U.S. Army Research Laboratory in Adelphi, Md.

“Ultimately we want to form building blocks that increase the effectiveness of a networked team of robots in an unknown environment,” Twigg said. “If robots can be programmed to map where there is the potential to communicate inside a building, then soldiers and other assets can know where in the building they will be able to communicate with a radio base station.”

Efficient Base Station Connectivity Region Discovery by Jeffrey Twigg, Jonathan Fink, Ph.D., Paul Yu, Ph.D., and Brian Sadler, Ph.D., is a project that takes a second step toward a broad understanding of solutions for Army robotics. The study has been submitted for publication by the International Journal of Robotics Research.

The researchers took their findings from earlier research conducted this year to the next level. They combined region decomposition and RSS sampling to form an efficient graph search. The nominal RSS in a sampling region is obtained by averaging local RSS samples to reduce the small scale fading variation.

At this point, the system has been tested in the lab as well as at the urban operations training site at Fort Indiantown Gap.

The algorithm can be used for sensing and collaborative autonomy within the region of base station connectivity, Twigg said.

The Army Research Laboratory researchers first presented the development: RSS Gradient-Assisted Frontier Exploration and Radio Source Localization at the 2012 International Conference on Robotics and Automation in St. Paul, Minn.

 




All of this week's top headlines to your email every Friday.


 
 

 
Army photograph by Sgt. Thomas Duval

Air Force, Army Aviation come together to complete vital mission in Egypt

Army photograph by Sgt. Thomas Duval Soldiers and airmen load a UH-60 Black Hawk into an Air Force C17 Globemaster III Aug. 19, 2104, at an old Israeli airstrip in the Sinai Peninsula of Egypt. The airstrip is now used by the M...
 
 
Air Force photograph by TSgt. Terri Praden

Joint effort validates ability to move Stryker vehicles via air

Air Force photograph by TSgt. Terri Praden An Army Stryker combat vehicle is guided into a C-17 Globemaster III during a 25th Infantry Division training exercise Aug. 13, 2014, at Joint Base Pearl Harbor-Hickam, Hawaii. The Str...
 
 

AF funds small business participation in research and development programs

The Air Force is searching for innovative, technology-based small businesses to compete for Small Business Innovation Research and Small Business Technology Transfer, or SBIR and STTR, research and development contracts. “We’re trying to foster innovative technology solutions for the warfighter and the U.S. Air Force SBIR and STTR programs ( by providing) more than $300...
 

 
Air Force photograph by Michele Eaton

AFRL gaming lab provides real-world training

Air Force photograph by Michele Eaton Air Force Research Laboratory Gaming Research Integration for Learning Lab interns Macy Fraylick and Lizzie Adams demonstrate the Full Throttle Karting simulation tool Aug. 7 at the Wright ...
 
 
Courtesy photograph

Air Force, Creare develop technology

Courtesy photograph CREARE engineers test the 10 K cryocooler in a thermal vacuum chamber. The Air Force and the New Hampshire-based business developed a two-stage turbo-Brayton cryocooler that is expected to enhance operation ...
 
 
Air Force photograph by SSgt. Sean Martin

Bomber crews showcase take-off talents

https://www.youtube.com/watch?v=F_8qr7ojpWg&feature=player_embedded Air Force photograph by SSgt. Sean Martin A B-52H Stratofortress starts its engines during a Minimum Interval Takeoff on Barksdale Air Force Base, La., Au...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>