Space

November 14, 2012

Student teams to build, fly rockets with onboard payloads for NASA rocketry challenge

Organizers of the NASA Student Launch Projects have announced the 57 student teams whose inventive creations will soar skyward in April during the space agency’s 2012-13 rocketry challenge.

Representing schools in 26 states around the country, participating teams each will design and build a large, high-powered rocket, complete with a working science or engineering payload and capable of flying to the target altitude of 1 mile. NASA created the rocketry challenge to encourage young people to pursue careers in the science, technology, engineering and mathematics fields.

“Every year, the NASA Student Launch Projects build on our students’ classroom studies in an energizing, exciting way,” said Tammy Rowan, manager of the Academic Affairs Office at NASA’s Marshall Space Flight Center in Huntsville, Ala., which organizes the event. “It’s great fun, but it also reflects the real-world complexity of planning missions, building flight hardware and completing tough pre-flight checks and reviews. It tests their problem-solving skills and gives them practical, hands-on experience. We hope the experience is so unforgettable it leads many of them to become the nation’s next generation of scientists, engineers and space explorers.”

Twenty-one middle school and high school teams will take part in the Student Launch Initiative, which is non-competitive. Thirty-six college and university teams will compete in the University Student Launch Initiative with a $5,000 first-place award provided by ATK Aerospace Group of Salt Lake City going to the winner.

“We are proud to be sponsoring NASA’s Student Launch Competition for the sixth year,” said Kent Rominger, a former astronaut who is vice president of business development for ATK’s Space Launch Division. “Each year we are impressed with the level of skill and knowledge these students exhibit. We are very optimistic and excited about the caliber of individuals that could become our future work force.”

Building the powerful rockets and designing and integrating the onboard engineering or science payloads are only two parts of the challenge. Teams also must maintain detailed preliminary and post-launch reports, and build and regularly update a public website to document their rocket-building experience. Each team also will develop an educational engagement program to inspire and educate younger students in their local school system and community.

In 2013, the teams will travel to Marshall, where their rockets will undergo a series of intensive reviews and safety inspections – a smaller-scale version of the rigorous processes applied to the nation’s space vehicles. The culmination of their work is set for April 21, when the students launch their creations one by one into the skies over northern Alabama. Each will be seeking the elusive 1-mile altitude goal, as well as a variety of annual awards for vehicle design, engineering excellence and team spirit.

The 26 states represented are Alabama, California, Florida, Georgia, Hawaii, Illinois, Indiana, Iowa, Kentucky, Massachusetts, Michigan, Minnesota, Mississippi, Nebraska, New Hampshire, New Mexico, New York, North Carolina, North Dakota, Ohio, Pennsylvania, Tennessee, Texas, Virginia, Washington and Wisconsin.

 

For a complete list of middle and high school teams, and more information about the challenge, visit http://education.msfc.nasa.gov/sli.

 

For a list of the university teams, visit http://education.msfc.nasa.gov/usli.

 

The NASA Student Launch Projects are sponsored jointly by NASA’s Human Exploration and Operations and Science mission directorates.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA/JPL-Caltech/UCLA/MPS/DLR/IDA image

NASA spacecraft becomes first to orbit a dwarf planet

NASA/JPL-Caltech/UCLA/MPS/DLR/IDA image Ceres is seen from NASA’s Dawn spacecraft on March 1, just a few days before the mission achieved orbit around the previously unexplored dwarf planet. The image was taken at a dista...
 
 
nasa-obit

Astronaut, astrophysicist F. Curtin Michel Dies at 80

Former Astronaut Curtis Michel, 80, a member of the astronaut class of 1965 and renowned astrophysicist, died Feb. 26, at his home in Houston. Michel (pronounced My-kull) was selected as an Apollo Program astronaut in June 1965...
 
 
NASA/GSFC image

NASA research suggests Mars once had more water than Earth’s Arctic Ocean

NASA/GSFC image NASA scientists have determined that a primitive ocean on Mars held more water than Earth’s Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. A primitive ocean on Mars held m...
 

 
Image courtesy of NASA/CXC/DSS/Magellan

NASA’s Chandra Observatory finds cosmic showers halt galaxy growth

Image courtesy of NASA/CXC/DSS/Magellan A study of over 200 galaxy clusters, including Abell 2597 shown here, with NASAís Chandra X-ray Observatory has revealed how an unusual form of cosmic precipitation stifles star formatio...
 
 
Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA spacecraft nears historic dwarf planet arrival

Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA NASA’s Dawn spacecraft took these images of dwarf planet Ceres from about 25,000 miles away Feb. 25, 2015. Ceres appears half in shadow because of the current position o...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>