Defense

November 21, 2012

Keeping the warfighter safe: 416th FLTS continues to enhance life-saving auto collision avoidance technology

Tags:
Jet Fabara
412th TW Public Affairs


Since the beginning of the partnership between the Department of Defense, NASA and Lockheed Martin, the Automatic Ground Collision Avoidance System has evolved into an instrument intended to keep civilian and military aircrew members fit to fly and fight another day.

More than 25 years later, team members from the 416th Flight Test Squadron continue to test that life-saving technology in order to see it fully integrated and implemented into the Air Force’s fourth generation fighters.

“Controlled flight into terrain, or CFIT, has proven to be a significant contributor to loss of life and aircraft in the U.S. Air Force fighter aircraft fleet. Between 1992 and 2004 there were 34 F-16 CFIT mishaps with 24 fatalities in the U.S. Air Force. The Auto GCAS was developed under the Automatic Collision Avoidance Technology program to reduce the number of CFITs in direct response to a Secretary of Defense mandated 75-percent reduction of DOD mishaps,” said Jessica Peterson, 416th FLTS flight dynamics lead.

“From the combat effectiveness standpoint, each aircraft lost to CFIT is one less asset combatant commanders have to employ during wartime. Clearly, that impacts our national security,” added Lt. Col. Robert Ungerman, 416th FLTS director of operations. “From the human standpoint, nothing destroys morale like losing a squadron mate and friend. Families and friends are devastated with each F-16 fatality we experience. The prevention of CFIT mishaps will avoid that anguish for dozens of spouses, parents, and children of lost pilots.”

According to the flight dynamics team, the Auto GCAS is designed to prevent CFIT mishaps by executing an automatic recovery maneuver when terrain impact is imminent. The system predicts CFIT conditions by means of a continuous comparison between a trajectory prediction and a terrain profile that is generated from onboard terrain elevation data. At the instant the predicted trajectory touches the terrain profile; the automatic recovery is executed by the Auto GCAS autopilot. The automatic recovery consists of an abrupt roll-to-upright and a nominal 5-g pull until terrain clearance is assured. The Auto GCAS recovery maneuver can be terminated at any time by the pilot.

“The Auto GCAS was not only designed to prevent CFIT, but to not interfere during normal F-16 operational maneuvers such as strafing missions and low-level flights,” added Peterson. “Furthermore, since spatial disorientation is a common cause of CFIT mishaps, the Pilot Activated Recovery System, or PARS, was designed to provide a disoriented pilot with a way to manually engage an automated recovery.”

The Air Force Research Laboratory, in partnership with the NASA Dryden Flight Research Center, Lockheed Martin Aero and the Air Force Flight Test Center initially demonstrated the feasibility of integrating an Auto GCAS and a PARS into the F-16 during the Fighter Risk Reduction Project in 2010, conducting more than 2,000 auto-recoveries.

“Although there are other automatic systems in development for other platforms, nothing has been implemented at this point,” Peterson said. “Since 2010, minor changes have been made to increase the protection envelope and decrease nuisance potential by making adjustments to the trajectory predictions, automatic recoveries, altitude buffers and the pilot-vehicle interface.”

The F-16 design try out flight test program has been ongoing at the 416th FLTS since fall 2011.

“In the end, Auto GCAS is an amazing compilation of technologies that will provide the final safety net should a pilot ever unknowingly put the aircraft in danger of hitting the ground,” said Maj. Kyle Schlappi, 416th FLTS Auto GCAS project test pilot. “Once AGCAS is fully fielded, I imagine we’ll see an abrupt decrease in fatal F-16 accidents as the CFIT rate drops to nearly zero. To the warfighter, and the warfighter’s family, Auto GCAS provides significant peace of mind to know such a capable system is keeping our pilots safe.”

The F-16 Auto GCAS is projected to save the U.S. Air Force 14 F-16 aircraft, 10 personnel, and $530 million over the future life of the F-16, according to Peterson. The system is expected to be fielded on all U.S. Air Force Block 40/42/50/52 F-16s by spring 2014, which totals approximately 640 aircraft.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>