Space

November 28, 2012

Researchers test novel power system for space travel


A team of researchers, including engineers from Los Alamos National Laboratory, N.M., has demonstrated a new concept for a reliable nuclear reactor that could be used on space flights.

The research team recently demonstrated the first use of a heat pipe to cool a small nuclear reactor and power a Stirling engine at the Nevada National Security Site’s Device Assembly Facility near Las Vegas. The Demonstration Using Flattop Fissions (DUFF) experiment produced 24 watts of electricity. A team of engineers from Los Alamos, the NASA Glenn Research Center and National Security Technologies LLC conducted the experiment.

Heat pipe technology was invented at Los Alamos in 1963. A heat pipe is a sealed tube with an internal fluid that can efficiently transfer heat produced by a reactor with no moving parts. A Stirling engine is a relatively simple closed-loop engine that converts heat energy into electrical power using a pressurized gas to move a piston. Using the two devices in tandem allowed for creation of a simple, reliable electric power supply that can be adapted for space applications.

Researchers configured DUFF on an existing experiment, known as Flattop, to allow for a water-based heat pipe to extract heat from uranium. Heat from the fission reaction was transferred to a pair of free-piston Stirling engines manufactured by Sunpower Inc., based in Athens Ohio. Engineers from NASA Glenn designed and built the heat pipe and Stirling assembly and operated the engines during the experiment. Los Alamos nuclear engineers operated the Flattop assembly under authorization from the National Nuclear Security Administration (NNSA).

DUFF is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and the experiment confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

“The nuclear characteristics and thermal power level of the experiment are remarkably similar to our space reactor flight concept,” said Los Alamos engineer David Poston. “The biggest difference between DUFF and a possible flight system is that the Stirling input temperature would need to be hotter to attain the required efficiency and power output needed for space missions.”

“The heat pipe and Stirling engine used in this test are meant to represent one module that could be used in a space system,” said Marc Gibson of NASA Glenn. “A flight system might use several modules to produce approximately one kilowatt of electricity.”

Current space missions typically use power supplies that generate about the same amount of electricity as one or two household light bulbs. The availability of more power could potentially boost the speed with which mission data is transmitted back to Earth, or increase the number of instruments that could be operated at the same time aboard a spacecraft.

“A small, simple, lightweight fission power system could lead to a new and enhanced capability for space science and exploration,” said Los Alamos project lead Patrick McClure. “We hope that this proof of concept will soon move us from the old-frontier of Nevada to the new-frontier of outer space.”

Los Alamos research on the project was made possible through Los Alamos’s Laboratory-Directed Research and Development Program, which is funded by a small percentage of the Laboratory’s overall budget to invest in new or cutting-edge research. NASA Glenn and NSTec also used internal support to fund their contributions to the experiment.

“Perhaps one of the more important aspects of this experiment is that it was taken from concept to completion in 6 months for less than a million dollars,” said Los Alamos engineer David Dixon. “We wanted to show that with a tightly-knit and focused team, it is possible to successfully perform practical reactor testing.”




All of this week's top headlines to your email every Friday.


 
 

 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 
 
NASA photograph by Aubrey Gemignani

New crew arrives at space station to continue scientific research

NASA photograph by Aubrey Gemignani The Soyuz TMA-15M rocket launches from the Baikonur Cosmodrome in Kazakhstan Nov. 24, 2014 carrying Expedition 42 Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosm...
 
 
nasa-cube

NASA opens Cube Quest Challenge for largest-ever prize of $5 million

Registration now is open for NASA’s Cube Quest Challenge, the agency’s first in-space competition that offers the agency’s largest-ever prize purse. Competitors have a shot at a share of $5 million in prize money and ...
 

 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 
NASA photograph

NASA announces new opportunities for public participation in asteroid grand challenge

NASA photograph Team NOVA Took the Winning Hackathon Prize.   Ten new projects are providing opportunities for the public to participate in NASA’s Asteroid Grand Challenge, which accelerates the agency’s astero...
 
 
XCOR Aerospace photograph by Mike Massee

XCOR Aerospace announces latest milestone in ULA program

XCOR Aerospace photograph by Mike Massee The XCOR-ULA XR-5H25 LOX-Hydrogen Rocket Engine, fed by XCOR’s proprietary rocket propellant piston pump technology. MOJAVE, Calif. XCOR Aerospace announced Nov. 20 it has complete...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>