Space

December 5, 2012

Mars rover fully analyzes first Martian soil samples

NASA’s Mars Curiosity rover has used its full array of instruments to analyze Martian soil for the first time, and found a complex chemistry within the Martian soil.

Water and sulfur and chlorine-containing substances, among other ingredients, showed up in samples Curiosity’s arm delivered to an analytical laboratory inside the rover.

Detection of the substances during this early phase of the mission demonstrates the laboratory’s capability to analyze diverse soil and rock samples over the next two years. Scientists also have been verifying the capabilities of the rover’s instruments.

The specific soil sample came from a drift of windblown dust and sand called “Rocknest.” The site lies in a relatively flat part of Gale Crater still miles away from the rover’s main destination on the slope of a mountain called Mount Sharp. The rover’s laboratory includes the Sample Analysis at Mars suite and the Chemistry and Mineralogy (CheMin) instrument. SAM used three methods to analyze gases given off from the dusty sand when it was heated in a tiny oven. One class of substances SAM checks for is organic compounds – carbon-containing chemicals that can be ingredients for life.

“We have no definitive detection of Martian organics at this point, but we will keep looking in the diverse environments of Gale Crater,” said SAM Principal Investigator Paul Mahaffy of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Curiosity’s APXS instrument and the Mars Hand Lens Imager camera on the rover’s arm confirmed Rocknest has chemical-element composition and textural appearance similar to sites visited by earlier NASA Mars rovers Pathfinder, Spirit and Opportunity. Curiosity’s team selected Rocknest as the first scooping site because it has fine sand particles suited for scrubbing interior surfaces of the arm’s sample-handling chambers. Sand was vibrated inside the chambers to remove residue from Earth. MAHLI close-up images of Rocknest show a dust-coated crust one or two sand grains thick, covering dark, finer sand.

“Active drifts on Mars look darker on the surface,” said MAHLI Principal Investigator Ken Edgett of Malin Space Science Systems in San Diego.”This is an older drift that has had time to be inactive, letting the crust form and dust accumulate on it.”

CheMin’s examination of Rocknest samples found the composition is about half common volcanic minerals and half non-crystalline materials such as glass. SAM added information about ingredients present in much lower concentrations and about ratios of isotopes. Isotopes are different forms of the same element and can provide clues about environmental changes. The water seen by SAM does not mean the drift was wet. Water molecules bound to grains of sand or dust are not unusual, but the quantity seen was higher than anticipated.

SAM tentatively identified the oxygen and chlorine compound perchlorate. This is a reactive chemical previously found in arctic Martian soil by NASA’s Phoenix Lander. Reactions with other chemicals heated in SAM formed chlorinated methane compounds – one-carbon organics that were detected by the instrument. The chlorine is of Martian origin, but it is possible the carbon may be of Earth origin, carried by Curiosity and detected by SAM’s high sensitivity design.

“We used almost every part of our science payload examining this drift,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology in Pasadena. “The synergies of the instruments and richness of the data sets give us great promise for using them at the mission’s main science destination on Mount Sharp.”

NASA’s Mars Science Laboratory Project is using Curiosity to assess whether areas inside Gale Crater ever offered a habitable environment for microbes. NASA’s Jet Propulsion Laboratory in Pasadena manages the project for NASA’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 
ULA photograph

Space and Missile Systems Center successfully launches the AFSPC-5 mission

ULA photograph An Atlas V rocket successfully launches the AFSPC-5 mission from Cape Canaveral Air Force Station, Fla., May 20, 2015.   The Air Force and its mission partners successfully launched the AFSPC-5 mission aboar...
 
 

NASA’s CubeSat initiative aids in testing of technology for solar sails in space

With help from NASA, a small research satellite to test technology for in-space solar propulsion launched into space May 20 aboard an Atlas V rocket from Cape Canaveral Air Force Station, Fla., as part of the agency’s CubeSat Launch Initiative. The Atlas V sent the U.S. Air Force’s X-37B space plane on its fourth mission,...
 
 
nasa-habitat

NASA challenges designers to construct habitat for deep space exploration

NASA and the National Additive Manufacturing Innovation Institute, known as America Makes, are holding a new $2.25 million competition to design and build a 3-D printed habitat for deep space exploration, including the agencyí...
 

 

NASA seeks additional information for ARM spacecraft

NASA has issued a Request for Information seeking ideas from American companies for a spacecraft design that could be used for both the agency’s Asteroid Redirect Mission and a robotic satellite servicing mission in low-Earth orbit. In the early-2020s NASA plans to launch the Asteroid Redirect Mission, which will use a robotic spacecraft to capture...
 
 
NASA photograph by Emmett Given

NASA names winners of student launch challenge

NASA photograph by Emmett Given Vanderbilt University of Nashville, Tenn., won top prize in the 2015 NASA Student Launch challenge near NASA Marshall’s Space Flight Center in Huntsville, Ala. For the third year in a row, Vand...
 
 
LM-orion

Orion test lab mockup for next flight finished

The construction of an Orion crew module and crew module adapter full-scale mockup has been completed at the Lockheed Martin Littleton, Colo., facility. This mockup was transferred to the Orion Test Lab May 13, 2015 where engin...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>