Space

December 5, 2012

Mars rover fully analyzes first Martian soil samples

NASA’s Mars Curiosity rover has used its full array of instruments to analyze Martian soil for the first time, and found a complex chemistry within the Martian soil.

Water and sulfur and chlorine-containing substances, among other ingredients, showed up in samples Curiosity’s arm delivered to an analytical laboratory inside the rover.

Detection of the substances during this early phase of the mission demonstrates the laboratory’s capability to analyze diverse soil and rock samples over the next two years. Scientists also have been verifying the capabilities of the rover’s instruments.

The specific soil sample came from a drift of windblown dust and sand called “Rocknest.” The site lies in a relatively flat part of Gale Crater still miles away from the rover’s main destination on the slope of a mountain called Mount Sharp. The rover’s laboratory includes the Sample Analysis at Mars suite and the Chemistry and Mineralogy (CheMin) instrument. SAM used three methods to analyze gases given off from the dusty sand when it was heated in a tiny oven. One class of substances SAM checks for is organic compounds – carbon-containing chemicals that can be ingredients for life.

“We have no definitive detection of Martian organics at this point, but we will keep looking in the diverse environments of Gale Crater,” said SAM Principal Investigator Paul Mahaffy of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Curiosity’s APXS instrument and the Mars Hand Lens Imager camera on the rover’s arm confirmed Rocknest has chemical-element composition and textural appearance similar to sites visited by earlier NASA Mars rovers Pathfinder, Spirit and Opportunity. Curiosity’s team selected Rocknest as the first scooping site because it has fine sand particles suited for scrubbing interior surfaces of the arm’s sample-handling chambers. Sand was vibrated inside the chambers to remove residue from Earth. MAHLI close-up images of Rocknest show a dust-coated crust one or two sand grains thick, covering dark, finer sand.

“Active drifts on Mars look darker on the surface,” said MAHLI Principal Investigator Ken Edgett of Malin Space Science Systems in San Diego.”This is an older drift that has had time to be inactive, letting the crust form and dust accumulate on it.”

CheMin’s examination of Rocknest samples found the composition is about half common volcanic minerals and half non-crystalline materials such as glass. SAM added information about ingredients present in much lower concentrations and about ratios of isotopes. Isotopes are different forms of the same element and can provide clues about environmental changes. The water seen by SAM does not mean the drift was wet. Water molecules bound to grains of sand or dust are not unusual, but the quantity seen was higher than anticipated.

SAM tentatively identified the oxygen and chlorine compound perchlorate. This is a reactive chemical previously found in arctic Martian soil by NASA’s Phoenix Lander. Reactions with other chemicals heated in SAM formed chlorinated methane compounds – one-carbon organics that were detected by the instrument. The chlorine is of Martian origin, but it is possible the carbon may be of Earth origin, carried by Curiosity and detected by SAM’s high sensitivity design.

“We used almost every part of our science payload examining this drift,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology in Pasadena. “The synergies of the instruments and richness of the data sets give us great promise for using them at the mission’s main science destination on Mount Sharp.”

NASA’s Mars Science Laboratory Project is using Curiosity to assess whether areas inside Gale Crater ever offered a habitable environment for microbes. NASA’s Jet Propulsion Laboratory in Pasadena manages the project for NASA’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 7, 2015

News: F-35 loses dogfight to fighter jet from 1980s – A new report alleges that an F-35A was defeated by the very aircraft it is meant to replace.   Business: South Korea selects Airbus for $1.33 billion tanker contract – European aerospace giant Airbus won a $1.33 billion deal June 30 to supply air refueling...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
Untitled-2

Tactical reconnaissance vehicle project eyes hoverbike for defense

The U.S. Army Research Laboratory, or ARL, has been exploring the tactical reconnaissance vehicle, or TRV, concept for nearly nine months and is evaluating the hoverbike technology as a way to get Soldiers away from ground thre...
 

 
Air Force photograph by SSgt. William Banton

Upgraded AWACS platform tested at Northern Edge

Air Force photograph by SSgt. William Banton Maintenance crew members prepare an E-3G Sentry (AWACS) for takeoff during exercise Northern Edge June 25, 2015. Roughly 6,000 airmen, soldiers, sailors, Marines and Coast Guardsmen ...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 
 
Air Force photograph by SSgt. Marleah Robertson

First Marine graduates Air Force’s F-35 intelligence course

Air Force photograph by SSgt. Marleah Robertson Marine Corps 1st Lt. Samuel Winsted, an F-35B Lightning II intelligence officer, provides a mock intelligence briefing to two instructors during the F-35 Intelligence Formal Train...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>