Defense

December 10, 2012

Army developing next-generation surveillance aircraft

Tags:
Kris Osborn
Army News


Army scientists, engineers and program developers are making substantial progress building and integrating a technically sophisticated battlefield surveillance aircraft called Enhanced Medium Altitude Reconnaissance and Surveillance System in a laboratory at Aberdeen Proving Ground, Md., service officials said.

The initial task, now underway at Aberdeen’s Joint Test and Integration Facility, is aimed at engineering and integrating an Enhanced Medium Altitude Reconnaissance and Surveillance System or EMARSS, fuselage with cameras, sensors, software, antennas, intelligence databases and electronic equipment so that the Army can deliver four Engineering Manufacturing Development aircraft to Afghanistan as part of a forward assessment of the capabilities, said Raymond Santiago, deputy product manager, Medium Altitude Reconnaissance and Surveillance Systems.

“An EMARSS Forward Operational Assessment will place this system in the hands of our Soldiers, allowing them to inform an assessment as to whether the system meets the approved requirements. We will get to see the system being used to gather real-world data in a combat environment, with a high optempo. This will help us refine and establish the architecture for the platform,” an Army acquisition official explained.

The Army plans to complete the EMARSS EMD Phase with a minimum of four aircraft systems. Overall, the EMD contract has options to procure two additional EMD systems and 4-6 Low Rate Initial Production systems.

Plans for the EMARSS aircraft include efforts to engineer a surveillance aircraft with a wide range of vital combat-relevant capabilities, such as the ability to quickly gather, integrate and disseminate intelligence information of great value to warfighters in real time; it is being built to do this with an integrated suite of cameras, sensors, communications and signals intelligence-gathering technologies and a data-link with ground-based intelligence databases allowing it to organize and communicate information of great relevance to a commander’s area of responsibility, Santiago explained.

The work at the JTIF laboratory, involving a significant development and integration-related collaborative effort with Army and industry engineers, is aimed at reducing risk through rapid prototyping and software and sensor integration. The EMARSS fuselage in the laboratory is a built-to specification model of a Hawker Beechcraft King Air 350, Santiago said.

“The laboratory gives us the flexibility to try things out with the fuselage. This helps us with how we configure the equipment,” Santiago added.
A key aim of the effort is to engineer and configure a modular aircraft designed with “open architecture” and a plug-and-play capability, allowing it to successfully integrate and function effectively with a variety of different sensor payloads, software packages and electronic equipment, he said.

“We want to build one bird with as many common capability packages on it as well as a full-motion video camera. We want it to be sensor agnostic,” Santiago said.

For example, the EMARSS aircraft is being configured to integrate a range of sensor packages such as Electro-Optical/Infrared cameras, MX-15 full-motion video cameras and an imaging sensor technology known as Wide Area Surveillance System able to identify and produce images spanning over a given area of terrain, Army acquisition officials explained.

The EMARSS capability is unique in that it is engineered with a data-link connecting the aircraft to the Army’s ground-based intelligence database called Distributed Common Ground System – Army. DCGS-A is a comprehensive integrated intelligence data repository, able to compile, organize, display and distribute information from more than 500 data sources; DCGS-A incorporates data from a wide array of sensors, including space-based sensors, geospatial information and signal and human intelligence sources. By having a data-link with information from the ground-bases DCGS-A, flight crews on board EMARSS will be able to use display screens and on-board electronics to receive and view intelligence information in real-time pertaining to their area of operations.

“As they are flying over an area, the EMARSS crew is able to immediately pick up the latest information from what other nearby intelligence assets are picking up. They can immediately get results from DCGS-A and see it on their display screens. Intelligence experts on the ground are doing analysis, and they can send relevant information back up to the aircraft,” Santiago explained.

Also, EMARSS’ plug-and-play, open architecture framework is being engineered so that the aircraft could potentially accommodate certain radar imaging technologies in the future, such as Ground Moving Target Indicator, a radar imaging technology able to detect moving vehicles and Synthetic Aperture Radar, a radar system able to paint an image or picture of the ground showing terrain, elevation and nearby structures, Santiago said.

Given that all the sensors, antennas, cameras and electronics are designed to operate within a common architecture, one possibility is to strategically disperse various sensor capabilities across a fleet of several EMARSS aircraft, thus maximizing the ability to gather and distribute relevant intelligence information, Santiago explained.

The Army Training and Doctrine Capability Manager for Intelligence Sensors (TCM Intel Sensors) is also working on the Capabilities Production Document which, according to plans, will eventually be submitted to the Joint Requirements Oversight Council before the EMARSS program can achieve a Milestone C production decision paving the way for limited rate initial production of the system in FY 13, Army acquisition officials explained.




All of this week's top headlines to your email every Friday.


 
 

 
Navy photograph by Seamn Edward Guttierrez III

Russian aircraft flies near U.S. Navy ship in Black Sea

Navy photograph by Seamn Edward Guttierrez III Sailors man the rails as the Arleigh Burke-class guided-missile destroyer USS Donald Cook arrives at Naval Station Rota, Spain, Feb. 11, 2014. Donald Cook is the first of four Arle...
 
 

45th Space Wing launches NRO Satellite on board Atlas V

The 45th Space Wing successfully launched a United Launch Alliance Atlas V rocket from Space Launch Complex 41, Vandenberg Air Force Base, Calif., at 1:45 p.m. April 10 carrying a classified national security payload. The payload was designed and built by the National Reconnaissance Office. “I am proud of the persistence and focus of the...
 
 
navair-x47a

X-47b completes night flights

  The unmanned X-47B conducts its first night flight April 10 over Naval Air Station Patuxent River, Md.  Night flights are the next incremental step in developing the operations concept for more routine UAS flight activity....
 

 
navy-zumwalt

Navy to christen future USS Zumwalt, new class of destroyer

The Navy will christen the future USS Zumwalt (DDG 1000) April 12, during a ceremony at General Dynamics-Bath Iron Works shipyard in Bath, Maine. The lead ship and class are named in honor of former Chief of Naval Operations (C...
 
 
Navy photograph by PO1 Lewis Hunsaker

Future USS America delivered

Navy photograph by PO1 Lewis Hunsaker More than 900 Sailors and Marines assigned to the amphibious assault ship Pre-Commissioning Unit (PCU) America (LHA 6) march to the ship to take custody of it. The U.S. Navy officially acce...
 
 
af-f22

Installation of backup oxygen system in F-22 combat fleet continues

The Air Force Life Cycle Management Center’s F-22 Division is on-track to complete installation of the Automatic Back-up Oxygen System, or ABOS, in the Air Force’s F-22 Raptor combat fleet by December 2014. In Janua...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>