Space

December 12, 2012

NASA Astrobiology Institute shows how wide binary stars form

Using computer simulations, scientists from the NASA Astrobiology Institute team at the University of Hawaii are shedding light on a question that has challenged astronomers for years: What causes wide binary stars?

Binary stars are pairs of stars that orbit each other. Wide binary stars are separated by as much as one light-year in their orbits, farther apart than some stellar nurseries are wide. Astronomers have known about such distant pairs for a long time but have not understood how they form.

Researchers simulated the complex motions of newborn triple stars still embedded in their nascent cloud cores. They studied the motions 180,000 times and concluded the widest binary systems began as three stars, not just two. This research appears in a paper to be published in the Dec. 13 issue of the journal Nature and was released last week online.

Most stars are born in small, compact systems with two or more stars at the center of a cloud core. When more than two stars share a small space, they gravitationally pull on each other in a chaotic dance. The least massive star often is kicked to the outskirts of the cloud core while the remaining stars grow larger and closer by feeding on the dense gas at the center of the cloud core.

If the force of the kick is not forecful enough, the runt star will not escape, but instead begin a very wide orbit of the other two, creating a wide binary. However, sometimes astronomers find only two stars in a wide binary. This means either the star system formed differently or something happened to one of the original binary pair.

“What may have happened is that the stars in the close binary merged into a single larger star,” said the paper’s lead author, Bo Reipurth of the Institute for Astronomy at the University of Hawaii at Manoa. “This can happen if there is enough gas in the cloud core to provide resistance to their motion. As the two stars in the close binary move around each other surrounded by gas, they lose energy and spiral toward each other. Sometimes there is so much gas in the core that the two close stars spiral all the way in and collide with each other in a spectacular merging explosion.”

The wide binary nearest to Earth is Alpha Centauri. The star itself is a close binary. Alpha Centauri has a small companion, Proxima Centauri, which orbits at a distance of about one-quarter of a light-year, or 15,000 times the distance between Earth and the sun. All three stars were born close together several billion years ago, before a powerful dynamic kick sent Proxima out into its wide path, where it has been orbiting ever since.

NASA’s Kepler mission already has proven that more than one planet can form and persist in the stressful realm of a binary star, a testament to the diversity of planetary systems in our galaxy.

NASA supported the University of Hawaii work through a cooperative agreement with NASA’s Ames Research Center, Moffett Field, Calif., and the NASA Astrobiology Institute, which is a partnership between NASA, 15 U.S. teams, and 10 international consortia. The research on wide binary stars included the University of Turku in Finland.

 




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA Ames/JPL-Caltech/T Pyle

NASA’s Kepler reborn, makes first exoplanet find of new mission

Image courtesy of NASA Ames/JPL-Caltech/T Pyle The artistic concept shows NASA’s planet-hunting Kepler spacecraft operating in a new mission profile called K2. Using publicly available data, astronomers have confirmed K2&...
 
 
NASA illustration

NASA, planetary scientists find meteoritic evidence of Mars water reservoir

This illustration depicts Martian water reservoirs. Recent research provides evidence for the existence of a third reservoir that is intermediate in isotopic composition between the Red Planetís mantle and its current atmosphe...
 
 
Lockheed Martin photograph

Lockheed Martin-built MUOS-3 satellite encapsulated in launch vehicle fairing

Lockheed Martin photograph The U.S. Navy’s Mobile User Objective System-3 satellite (above) is encapsulated in its payload fairings for a scheduled Jan. 20, 2015 launch aboard a United Launch Alliance Atlas V rocket. MUOS ope...
 

 
NASA photograph

NASA’s Orion arrives back at Kennedy

NASA photograph NASA’s Orion spacecraft returned to the agency’s Kennedy Space Center in Florida Dec. 18, 2014. The spacecraft flew to an altitude of 3,600 miles in space during a Dec. 5 flight test designed to stre...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>