Space

January 7, 2013

Lockheed Martin delivers GOES-R weather satellite core structure for propulsion system integration

The rigid external structure of the first GOES-R, which will enclose the satelliteís propulsion system and support the payloads, was designed by Lockheed Martin and manufactured by ATK Aerospace Groupís Space and Components Division, in San Diego.

Lockheed Martin delivered the core structure for the first in a series of the National Oceanic and Atmospheric Administrationís next-generation geostationary weather satellites to the companyís Mississippi Space and Technology Center on NASAís Stennis Space Center where it will undergo propulsion system integration.

The rigid external structure of the first Geostationary Operational Environmental SatelliteñR Series, which will enclose the satelliteís propulsion system and support the payloads, was designed by Lockheed Martin Space Systems, in Newtown, Penn., and manufactured by ATK Aerospace Groupís Space and Components Division, in San Diego.

Built out of composite panels comprised of aluminum honeycomb sandwiched between graphite composite face sheets, the structure only weighs 400 pounds yet supports loads in excess of 95,000 pounds in the thrust direction and 1.8 million in-pounds in a bending moment.

For the next 11 months, the team will integrate GOES-Rís fuel tanks, lines, thermal controls and other systems within the core structure. GOES-R is based on the companyís highly reliable A2100 satellite series.

The successful delivery of the core structure is the latest on-schedule milestone towards the planned 2015 launch of the first GOES-R series spacecraft, said Paula Hartley, program manager for GOES-R at Lockheed Martin Space Systems Company. ìOnce the propulsion integration is complete, the structure will be mated to the GOES-R system module, which houses the satelliteís advanced instrumentation electronics and other critical subsystems, essentially forming the entire structure of the spacecraft.

Data from NOAAís GOES satellites provide accurate real-time weather forecasts and early warning products to the public and private sectors. The advanced spacecraft and instrument technology used on the GOES-R series will vastly improve forecasting quality and timeliness, generating significant benefits to the U.S. and Western Hemisphere in the areas of public safety, climate monitoring, space weather prediction, ecosystems management, commerce, and transportation.

In December 2008, NASA selected Lockheed Martin to build two next-generation GOES-R series spacecraft, with options for two additional spacecraft. In May 2012, the system passed its critical design review, a key milestone that paved the way for the team to begin the build and integration phase for the first R-series spacecraft. In addition to the spacecraft, Lockheed Martin is also designing and building the Solar Ultraviolet Imager and the Geostationary Lighting Mapper instruments that will fly aboard the spacecraft.

The NOAA Satellite and Information Service funds, manages, and will operate the GOES-R series satellites. NASA oversees the acquisition and development of the GOES-R spacecraft and instruments for NOAA. The program is co-located at NASAís Goddard Space Flight Center in Greenbelt, Md.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 1, 2014

News: Military downsizing leaves U.S. too weak to counter global threats, panel finds - An independent panel appointed by the Pentagon and Congress said July 31 that President Obama’s strategy for sizing the armed services is too weak for today’s global threats. Defense industry funds flow to contenders for key House chairmanships - Four of the top...
 
 

News Briefs August 1, 2014

China allows foreign reporters at news conference Foreign reporters are being allowed to attend China’s Defense Ministry briefings for the first time, marking a small milestone in the increasingly confident Chinese military’s efforts to project a more transparent image. Restrictions still apply and there is no sign of an improvement in the generally paltry amount...
 
 
Army photograph by John Andrew Hamilton

Rapid Equipping Force, PEO Soldier test targeting device at White Sands Missile Range

Army photograph by John Andrew Hamilton SFC Justin Rotti, a combat developer from the Training and Doctrine Command Fire Cell, Fires Center of Excellence, uses a developmental hand held precision targeting device during a test ...
 

 

NASA awards modification for geophysics, geodynamics, space geodesy support contract

NASA has awarded a modification to Stinger Ghaffarian Technologies Inc. of Greenbelt, Md. to continuing working the the Geophysics, Geodynamics and Space Geodesy Support Services contract. The maximum ordering value of the GGSG contract will increase to $76.8 million. The previous amount was $49.5 million. The increase in the maximum ordering value of the contract...
 
 
boeing-japan

Boeing, All Nippon Airways finalize order for 40 wide-body airplanes

  Boeing and All Nippon Airways July 31 finalized an order for 40 widebody airplanes – 20 777-9Xs, 14 787-9 Dreamliners and six 777-300ERs (Extended Range) – as part of the airline’s strategic long-haul fleet ren...
 
 

Excalibur Ib enters full rate production, receives $52 million award

TUCSON, Ariz., July 31, 2014 /PRNewswire/ — Raytheon’s Excalibur Ib precision guided projectile has entered full rate production. U.S. Army approval of FRP completes Excalibur Ib’s low rate initial production phase. †Additionally, the U.S. Army has awarded Raytheon $52 million for continued Excalibur Ib production. “The full rate production decision is the culmination ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>