Space

January 7, 2013

Lockheed Martin delivers GOES-R weather satellite core structure for propulsion system integration

The rigid external structure of the first GOES-R, which will enclose the satelliteís propulsion system and support the payloads, was designed by Lockheed Martin and manufactured by ATK Aerospace Groupís Space and Components Division, in San Diego.

Lockheed Martin delivered the core structure for the first in a series of the National Oceanic and Atmospheric Administrationís next-generation geostationary weather satellites to the companyís Mississippi Space and Technology Center on NASAís Stennis Space Center where it will undergo propulsion system integration.

The rigid external structure of the first Geostationary Operational Environmental SatelliteñR Series, which will enclose the satelliteís propulsion system and support the payloads, was designed by Lockheed Martin Space Systems, in Newtown, Penn., and manufactured by ATK Aerospace Groupís Space and Components Division, in San Diego.

Built out of composite panels comprised of aluminum honeycomb sandwiched between graphite composite face sheets, the structure only weighs 400 pounds yet supports loads in excess of 95,000 pounds in the thrust direction and 1.8 million in-pounds in a bending moment.

For the next 11 months, the team will integrate GOES-Rís fuel tanks, lines, thermal controls and other systems within the core structure. GOES-R is based on the companyís highly reliable A2100 satellite series.

The successful delivery of the core structure is the latest on-schedule milestone towards the planned 2015 launch of the first GOES-R series spacecraft, said Paula Hartley, program manager for GOES-R at Lockheed Martin Space Systems Company. ìOnce the propulsion integration is complete, the structure will be mated to the GOES-R system module, which houses the satelliteís advanced instrumentation electronics and other critical subsystems, essentially forming the entire structure of the spacecraft.

Data from NOAAís GOES satellites provide accurate real-time weather forecasts and early warning products to the public and private sectors. The advanced spacecraft and instrument technology used on the GOES-R series will vastly improve forecasting quality and timeliness, generating significant benefits to the U.S. and Western Hemisphere in the areas of public safety, climate monitoring, space weather prediction, ecosystems management, commerce, and transportation.

In December 2008, NASA selected Lockheed Martin to build two next-generation GOES-R series spacecraft, with options for two additional spacecraft. In May 2012, the system passed its critical design review, a key milestone that paved the way for the team to begin the build and integration phase for the first R-series spacecraft. In addition to the spacecraft, Lockheed Martin is also designing and building the Solar Ultraviolet Imager and the Geostationary Lighting Mapper instruments that will fly aboard the spacecraft.

The NOAA Satellite and Information Service funds, manages, and will operate the GOES-R series satellites. NASA oversees the acquisition and development of the GOES-R spacecraft and instruments for NOAA. The program is co-located at NASAís Goddard Space Flight Center in Greenbelt, Md.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>