Space

January 10, 2013

NASA’s NuSTAR catches black holes in galaxy web

nasa-nustarNASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, set its X-ray eyes on a spiral galaxy and caught the brilliant glow of two black holes lurking inside.

The new image was released Jan. 7 along with NuSTAR’s view of the supernova remnant Cassiopeia A, at the American Astronomical Society meeting in Long Beach, Calif.

“These new images showcase why NuSTAR is giving us an unprecedented look at the cosmos,” said Lou Kaluzienski, NuSTAR Program Scientist at NASA headquarters in Washington. “With NuSTAR’s greater sensitivity and imaging capability, we’re getting a wealth of new information on a wide array of cosmic phenomena in the high-energy X-ray portion of the electromagnetic spectrum.”

Launched last June, NuSTAR is the first orbiting telescope with the ability to focus high-energy X-ray light. It can view objects in considerably greater detail than previous missions operating at similar wavelengths. Since launch, the NuSTAR team has been fine-tuning the telescope, which includes a mast the length of a school bus connecting the mirrors and detectors.

The mission has looked at a range of extreme, high-energy objects already, including black holes near and far, and the incredibly dense cores of dead stars. In addition, NuSTAR has begun black-hole searches in the inner region of the Milky Way galaxy and in distant galaxies in the universe.

Among the telescope’s targets is the spiral galaxy IC342, also known as Caldwell 5, featured in one of the two new images. This galaxy lies 7 million light-years away in the constellation Camelopardalis (the Giraffe). Previous X-ray observations of the galaxy from NASA’s Chandra X-ray Observatory revealed the presence of two blinding black holes, called ultraluminous X-ray sources.

How ULXs can shine so brilliantly is an ongoing mystery in astronomy. While these black holes are not as powerful as the supermassive black hole at the hearts of galaxies, they are more than 10 times brighter than the stellar-mass black holes peppered among the stars in our own galaxy. Astronomers think ULXs could be less common intermediate-mass black holes, with a few thousand times the mass of our sun, or smaller stellar-mass black holes in an unusually bright state. A third possibility is that these black holes don’t fit neatly into either category.

“High-energy X-rays hold a key to unlocking the mystery surrounding these objects,” said Fiona Harrison, NuSTAR principal investigator at the California Institute of Technology in Pasadena. “Whether they are massive black holes, or there is new physics in how they feed, the answer is going to be fascinating.”

In the image, the two bright spots that appear entangled in the arms of the IC342 galaxy are the black holes. High-energy X-ray light has been translated into the color magenta, while the galaxy itself is shown in visible light.

“Before NuSTAR, high-energy X-ray pictures of this galaxy and the two black holes would be so fuzzy that everything would appear as one pixel,” said Harrison.

The second image features the well-known, historical supernova remnant Cassiopeia A, located 11,000 light-years away in the constellation Cassiopeia. The color blue indicates the highest energy X-ray light seen by NuSTAR, while red and green signify the lower end of NuSTAR’s energy range. The blue region is where the shock wave from the supernova blast is slamming into material surrounding it, accelerating particles to nearly the speed of light. As the particles speed up, they give off a type of light known as synchrotron radiation. NuSTAR will be able to determine for the first time how energetic the particles are, and address the mystery of what causes them to reach such great speeds.

“Cas A is the poster child for studying how massive stars explode and also provides us a clue to the origin of the high-energy particles, or cosmic rays, that we see here on Earth,” said Brian Grefenstette of Caltech, a lead researcher on the observations. “With NuSTAR, we can study where, as well as how, particles are accelerated to such ultra-relativistic energies in the remnant left behind by the supernova explosion.”

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 29, 2014

News: U.S. military limits warplanes used for Islamic State bombingsĀ - The U.S. is relying mostly on warplanes already positioned in the region for its air war against the Islamic State, as opposed to dispatching a major buildup of aerial forces that happened in previous campaigns.   Business: At DOD, it’s use-it-or-lose-it seasonĀ - As fiscal 2014...
 
 

News Briefs September 29, 2014

Navy awards ship design grant to UNO The University of New Orleans has received a $210,000 grant from the Navy s Office of Naval Research to test information gathering and analysis techniques intended to improve warship design. The goal for warship designers is to produce a vessel that can be repurposed numerous times throughout its...
 
 
Courtesy photograph

TACP-M ties it all together

Air National Guard photograph by SSgt. Lealan Buehrer Tactical air control party specialists with the 169th Air Support Operations Squadron survey an enemy-controlled landing zone before calling in close-air support Aug. 14, 20...
 

 
Air Force photograph by A1C Thomas Spangler

Nellis aggressor squadron inactivated

Air Force photograph by A1C Thomas Spangler SSgt. Justin White signals to Maj. Sam Joplin to begin taxiing a 65th Aggressor Squadron F-15 Eagle to the runway Sept. 18, 2014, at Nellis Air Force Base Nev. The roles and responsib...
 
 
Army photograph by SSgt. Mary S. Katzenberger

82nd Airborne helps commemorate 70th Anniversary of Operation Market Garden

Army photograph by SSgt. Mary S. Katzenberger A paratrooper assigned to the 82nd Airborne Division, reflects near the grave of a British paratrooper at the Arnhem Oosterbeek War Cemetery, Sept. 14, 2014, in the Netherlands. The...
 
 

Raytheon awarded $251 million Tomahawk missile contract

The U.S. Navy has awarded Raytheon a $251 million contract to procure Tomahawk Block IV tactical cruise missiles for fiscal year 2014 with an option for 2015. The contract calls for Raytheon to build and deliver Tomahawk Block IV cruise missiles to the U.S. Navy and U.K. Royal Navy. Raytheon will also conduct flight tests...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>