Tech

January 11, 2013

Army assesses electromagnetic vulnerabilities

army-electromagnetic2The U.S. Army Research Laboratory, Survivability/Lethality Analysis Directorate’s state-of-the-art Electromagnetic Vulnerability Assessment Facility here is used to conduct experiments that address the electromagnetic vulnerability requirements of the U.S. Army Weapon and Communication-Electronics Systems.

Electromagnetic vulnerability is the characteristics of a system that cause it to suffer a definite degradation (incapability to perform the designated mission) as a result of having been subjected to a certain level of electromagnetic environmental effects, also called EMV.

The Electromagnetic Vulnerability Assessment Facility, or EMVAF, is used to sustain Army Research Laboratory’s, or ARL’s, ongoing mission to evaluate Army weapon systems’ survivability against the full spectrum of electromagnetic energy threats on the battlefield and in operations other than war. This includes the means to determine weapon systems’ survivability against radio-frequency directed energy weapons, electronic warfare jamming and unintentional interference.

The EMVAF is a secure electromagnetic spectrum research facility that houses two double-shielded anechoic chambers, each of which enable precise controlled measurements. The main shielded anechoic chamber is 100 ft. x 70 ft. x 40 ft., and has a turntable capable of supporting 100-ton test vehicles. It is the largest of its type in the Army.

An anechoic chamber is designed to reduce all spurious radio frequency, or RF, energy to a minimum. In so doing, experiments can be performed in an RF environment with the minimum number of variables making the RF engineers analysis faster and more definitive.

At the EMVAF, two methods of reducing the spurious RF energy are the 100-decibel isolation that each layer of the shielding system provides and the radar absorbing material, or RAM, ability to absorb RF energy that is generated within the chamber.

In simple terms, the RF shielding is the fully seam welded steel structure surrounding the chamber that includes RF tight doors. This is also known as a Faraday cage, which guarantees that RF energy generated outside the shield stays out of the chamber environment.

Likewise, RF energy that is generated inside the shield stays inside the chamber. The modern world RF environment is very noisy. Keeping the noisy world outside of the chamber reduces the number of accidental interference or variables for an experiment. Keeping the signals generated inside the chamber and within the chamber offers a level of security to a system developer depending on the classification of signals they may be generating.

The RAM that lines the inside of the chamber is designed to absorb the RF energy that is generated during an experiment. This is critical since each chamber is in essence a huge metal box, which would otherwise allow the RF to bounce off the walls and back to the item under investigation.

By absorbing the RF energy at the boundaries, the engineer can strictly control and thus identify what energy is specifically occurring between the item under investigation and the receive antenna in the chamber.

With the high level of control of the RF energy in the chamber, engineers can perform a wide range of RF tests within the chambers. These tests can include radiated emissions as well as radiated interference tests. In the first case, the engineer is looking at what the test item is radiating and in the second what RF energy will cause problems for the system.

The EMVAF, and more specifically the Survivability/Lethality Analysis Directorate, or SLAD, has available a wide range of personnel expertise that can be brought to bear on any given experiment. If a specific project at the EMVAF requires expertise in electronic warfare, computer network operations, counter-improvised explosive device, laser and optics or infrared, all can be supported with local expertise in the area.

If specific radio communications expertise is required that cannot be fulfilled locally, then experts within SLAD at Aberdeen Proving Ground, Md., can be brought in to support the requirement. In short, SLAD has the ability to supply the expertise required to make certain projects supported at the EMVAF receive the high quality data needed to move forward.

In addition to the chambers, the EMVAF includes control rooms, laboratory and office space. It is the Army’s premiere facility for performing controlled measurements for RF and microwave survivability/lethality/vulnerability of electronic systems.

Expertise in electronic warfare, counter IED, computer network operations, and modeling and simulation can all be brought in from local SLAD resources to meet specific requirements of a given customer. In so doing, the experiment design can be closely tailored to meet the exacting requirements of the given program.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>