Space

January 11, 2013

NASA prepares for launch of next Earth observation satellite

NASA’s Landsat Data Continuity Mission is scheduled to launch Feb. 11 from Vandenberg Air Force Base in California. A joint NASA and U.S. Geological Survey mission, LDCM will add to the longest continuous data record of Earth’s surface as viewed from space.

LDCM is the eighth satellite in the Landsat series, which began in 1972. The mission will extend more than 40 years of global land observations that are critical in many areas, such as energy and water management, forest monitoring, human and environmental health, urban planning, disaster recovery and agriculture. NASA and the USGS jointly manage the Landsat Program.

“For decades, Landsat has played an important part in NASA’s mission to advance Earth system science. LDCM promises to extend and expand that capability,” said Michael Freilich, director of the Earth Science Division in the Science Mission Directorate at NASA Headquarters in Washington. “USGS’s policy of offering free and open access to the phenomenal 40-year Landsat data record will continue to give the United States and global research community a better understanding of the changes occurring on our planet.”

After launch, LDCM will enter a polar orbit, circling the Earth about 14 times daily from an altitude of 438 miles (705 kilometers), returning over each location on Earth every 16 days. After launch and the initial checkout phase, the USGS will take operational control of the satellite, and LDCM will be renamed Landsat 8. Data will be downlinked to three ground stations in Gilmore Creek, Alaska; Svalbard, Norway; and Sioux Falls, S.D. The data will be archived and distributed at no cost to users from the USGS’s Earth Resources Observation and Science Center in Sioux Falls.

“The Landsat program provides the nation with crucial, impartial data about its natural resources,” said Matthew Larsen, USGS associate director for climate and land use change in Reston, Va. “Forest managers, for instance, use Landsat’s recurring imagery to monitor the status of woodlands in near real-time. Landsat-based approaches also now are being used in most western states for cost-effective allocation of water for irrigation. This mission will continue that vital role.”

LDCM carries two instruments, the Operational Land Imager, built by Ball Aerospace & Technologies Corp. in Boulder, Colo., and the Thermal Infrared Sensor, built by NASA’s Goddard Space Flight Center in Greenbelt, Md. These instruments are designed to improve performance and reliability over previous Landsat sensors.

“LDCM will be the best Landsat satellite yet launched in terms of the quality and quantity of the data collected by the LDCM sensors,” said Jim Irons, LDCM project scientist at Goddard. “OLI and TIRS both employ technological advances that will make the observations more sensitive to the variation across the landscape and to changes in the land surface over time.”

OLI will continue observations currently made by Landsat 7 in the visible, near infrared, and shortwave infrared portions of the electromagnetic spectrum. It also will take measurements in two new bands, one to observe high altitude cirrus clouds and one to observe water quality in lakes and shallow coastal oceans as well as aerosols. OLI’s new design has fewer moving parts than previous versions.

TIRS will collect data on heat emitted from Earth’s surface in two thermal bands, as opposed to the single thermal band on previous Landsat satellites. Observations in the thermal bands are vital to monitoring water consumption, especially in the arid western United States.

The LDCM spacecraft, built by Orbital Sciences Corp. in Gilbert, Ariz., will launch from Vandenberg’s Space Complex 3 aboard an Atlas V rocket provided by United Launch Alliance. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management.

 




All of this week's top headlines to your email every Friday.


 
 

 

ATK announces contract award from ULA to build composite launch vehicle structures

ATK has reached agreement on a $178 million contract award as part of the Air Force’s Phase 1 Evolved Expendable Launch Vehicle buy from United Launch Alliance. The order value includes hardware for both of the current United States Air Force EELV launch vehicles, the Atlas V and Delta IV. The initial contracting period includes...
 
 

NASA names six new members to advisory council

NASA Administrator Charles Bolden has announced the appointment of six new members to the NASA Advisory Council. The group advises NASA’s senior leadership on challenges and solutions facing the agency as it unfolds a new era of exploration. The six new members are Wanda Austin, Wayne Hale, Scott Hubbard, Miles OBrien, Thomas Young, and Kathryn...
 
 
NASA photograph

NASA astronauts will breathe easier with new oxygen recovery systems

NASA photograph ISS Air Revittilization System rack represents the state of the art in spacecraft oxygen recovery technology. For NASA’s long-duration human spaceflight missions, travelers will need to recycle as much bre...
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>