Space

January 16, 2013

NASA awards Space Launch System advanced development grants

NASA has awarded grants to nine universities for advanced development activities for the nation’s next heavy-lift rocket, the Space Launch System (SLS).

The agency is providing approximately $2.25 million that will be shared by all the proposals under this NASA Research Announcement to seek innovative and affordable solutions to evolve the launch vehicle from its initial lift capability to a larger, future version of the rocket, which will carry humans farther into deep space than ever before. NASA sought proposals in a variety of areas, including concept development, trades and analyses, propulsion, structures, materials, manufacturing, avionics and software.

“Partnering with academia on SLS advanced concepts brings new ideas and vitality to NASA and expands the SLS team of rocket scientists beyond just the agency,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington.

The selected universities and their proposals are:

  • “High Electric Density Device for Aerospace Applications,” Auburn University
  • “Challenges Towards Improved Friction Stir Welds Using On-line Sensing of Weld Quality,” Louisiana State University
  • “A New Modeling Approach for Rotating Cavitation Instabilities in Rocket Engine Turbopumps,” Massachusetts Institute of Technology
  • “Algorithmic Enhancements for High-Resolution Hybrid RANS-LES Using Loci-CHEM,” Mississippi State University
  • “Characterization of Aluminum/Alumina/Carbon Interactions under Simulated Rocket Motor Conditions,” Pennsylvania State University
  • “Development of Subcritical Atomization Models in the Loci Framework for Liquid Rocket Injectors,” University of Florida
  • “Validation of Supersonic Film Cooling Numerical Simulations Using Detailed Measurements and Novel Diagnostics,” University of Maryland
  • “Advanced LES and Laser Diagnostics to Model Transient Combustion-Dynamical Processes in Rocket Engines: Prediction of Flame Stabilization and Combustion-Instabilities,” University of Michigan
  • “Acoustic Emission-Based Health Monitoring of Space Launch System Structures,” University of Utah

For a description of each of the proposals, visit:

http://go.nasa.gov/ULC5iT

“As we make tangible progress on the initial launch vehicle, our advanced development team is formulating concepts for an evolved version of the rocket,” said Todd May, SLS Program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “The work being done today on SLS is a national and collaborative effort. With faculties and students engaged now, we look forward to creative, innovative and more affordable strategies to guide development of the next-generation heavy-lift launch vehicle.”

The SLS is designed to be flexible for launching payloads and spacecraft, including NASA’s Orion Multi-Purpose Crew Vehicle, which will take humans beyond low-Earth orbit. The rocket will enable the agency to achieve its deep-space exploration goals and create new possibilities for scientific discovery.

The period of performance for these grants will be one year with as many as two one-year options.

The first flight test of NASA’s SLS, which will feature a configuration for a 70-metric-ton (77-ton) lift capacity, is scheduled for 2017 from NASA’s Kennedy Space Center in Florida.

 




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 
 

NASA releases first global rainfall, snowfall map from new mission

Like a lead violin tuning an orchestra, the GPM Core Observatory – launched one year ago on Feb. 27, 2014, as a collaboration between NASA and the Japan Aerospace Exploration Agency – acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA’s Integrated Multi-satellite Retrievals for GPM...
 

 

New NASA Earth Science Missions expand view of our home planet

Four new NASA Earth-observing missions are collecting data from space with a fifth newly in orbit ñ after the busiest year of NASA Earth science launches in more than a decade. On Feb. 27, 2014, NASA and the Japan Aerospace Exploration Agency launched the Global Precipitation Measurement Core Observatory into space from Japan. Data from...
 
 

NASA, ESA telescopes give shape to furious black hole winds

NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions – a phenomenon that had been suspected, but difficult to prove until now. This discovery has given astronomers their first opportunity to measure the strength of these...
 
 
NASA photograph by Gary Banziger

Jurczyk named head of NASA Space Technology Mission Directorate

NASA photograph by Gary Banziger NASA’s Steve Jurczyck addresses an audience during a manufacturing event in Hampton, Va., last month. NASA Administrator Charles Bolden has named Steve Jurczyk as the agency’s Associ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>