Space

January 16, 2013

NASA awards Space Launch System advanced development grants

NASA has awarded grants to nine universities for advanced development activities for the nation’s next heavy-lift rocket, the Space Launch System (SLS).

The agency is providing approximately $2.25 million that will be shared by all the proposals under this NASA Research Announcement to seek innovative and affordable solutions to evolve the launch vehicle from its initial lift capability to a larger, future version of the rocket, which will carry humans farther into deep space than ever before. NASA sought proposals in a variety of areas, including concept development, trades and analyses, propulsion, structures, materials, manufacturing, avionics and software.

“Partnering with academia on SLS advanced concepts brings new ideas and vitality to NASA and expands the SLS team of rocket scientists beyond just the agency,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington.

The selected universities and their proposals are:

  • “High Electric Density Device for Aerospace Applications,” Auburn University
  • “Challenges Towards Improved Friction Stir Welds Using On-line Sensing of Weld Quality,” Louisiana State University
  • “A New Modeling Approach for Rotating Cavitation Instabilities in Rocket Engine Turbopumps,” Massachusetts Institute of Technology
  • “Algorithmic Enhancements for High-Resolution Hybrid RANS-LES Using Loci-CHEM,” Mississippi State University
  • “Characterization of Aluminum/Alumina/Carbon Interactions under Simulated Rocket Motor Conditions,” Pennsylvania State University
  • “Development of Subcritical Atomization Models in the Loci Framework for Liquid Rocket Injectors,” University of Florida
  • “Validation of Supersonic Film Cooling Numerical Simulations Using Detailed Measurements and Novel Diagnostics,” University of Maryland
  • “Advanced LES and Laser Diagnostics to Model Transient Combustion-Dynamical Processes in Rocket Engines: Prediction of Flame Stabilization and Combustion-Instabilities,” University of Michigan
  • “Acoustic Emission-Based Health Monitoring of Space Launch System Structures,” University of Utah

For a description of each of the proposals, visit:

http://go.nasa.gov/ULC5iT

“As we make tangible progress on the initial launch vehicle, our advanced development team is formulating concepts for an evolved version of the rocket,” said Todd May, SLS Program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “The work being done today on SLS is a national and collaborative effort. With faculties and students engaged now, we look forward to creative, innovative and more affordable strategies to guide development of the next-generation heavy-lift launch vehicle.”

The SLS is designed to be flexible for launching payloads and spacecraft, including NASA’s Orion Multi-Purpose Crew Vehicle, which will take humans beyond low-Earth orbit. The rocket will enable the agency to achieve its deep-space exploration goals and create new possibilities for scientific discovery.

The period of performance for these grants will be one year with as many as two one-year options.

The first flight test of NASA’s SLS, which will feature a configuration for a 70-metric-ton (77-ton) lift capacity, is scheduled for 2017 from NASA’s Kennedy Space Center in Florida.

 




All of this week's top headlines to your email every Friday.


 
 

 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 
 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 

 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 
 
LM-MUOS-satellite

U.S. Navy poised to Launch Lockheed Martin-built MUOS-3 satellite

The U.S. Navy and Lockheed Martin are ready to launch the third Mobile User Objective System satellite, MUOS-3, from Cape Canaveral Air Force Station, Fla., Jan. 20 aboard a United Launch Alliance Atlas V rocket. The launch win...
 
 

NASA, NOAA find 2014 warmest year in modern record

https://www.youtube.com/embed/-ilg75uJZZU?enablejsapi=1&rel=0 The year 2014 ranks as Earth’s warmest since 1880, according to two separate analyses by NASA and National Oceanic and Atmospheric Administration scientists. The 10 warmest years in the instrumental record, with the exception of 1998, have now occurred since 2000. This trend continues a long-term warming of the planet, acc...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>