Space

January 16, 2013

NASA awards Space Launch System advanced development grants

NASA has awarded grants to nine universities for advanced development activities for the nation’s next heavy-lift rocket, the Space Launch System (SLS).

The agency is providing approximately $2.25 million that will be shared by all the proposals under this NASA Research Announcement to seek innovative and affordable solutions to evolve the launch vehicle from its initial lift capability to a larger, future version of the rocket, which will carry humans farther into deep space than ever before. NASA sought proposals in a variety of areas, including concept development, trades and analyses, propulsion, structures, materials, manufacturing, avionics and software.

“Partnering with academia on SLS advanced concepts brings new ideas and vitality to NASA and expands the SLS team of rocket scientists beyond just the agency,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington.

The selected universities and their proposals are:

  • “High Electric Density Device for Aerospace Applications,” Auburn University
  • “Challenges Towards Improved Friction Stir Welds Using On-line Sensing of Weld Quality,” Louisiana State University
  • “A New Modeling Approach for Rotating Cavitation Instabilities in Rocket Engine Turbopumps,” Massachusetts Institute of Technology
  • “Algorithmic Enhancements for High-Resolution Hybrid RANS-LES Using Loci-CHEM,” Mississippi State University
  • “Characterization of Aluminum/Alumina/Carbon Interactions under Simulated Rocket Motor Conditions,” Pennsylvania State University
  • “Development of Subcritical Atomization Models in the Loci Framework for Liquid Rocket Injectors,” University of Florida
  • “Validation of Supersonic Film Cooling Numerical Simulations Using Detailed Measurements and Novel Diagnostics,” University of Maryland
  • “Advanced LES and Laser Diagnostics to Model Transient Combustion-Dynamical Processes in Rocket Engines: Prediction of Flame Stabilization and Combustion-Instabilities,” University of Michigan
  • “Acoustic Emission-Based Health Monitoring of Space Launch System Structures,” University of Utah

For a description of each of the proposals, visit:

http://go.nasa.gov/ULC5iT

“As we make tangible progress on the initial launch vehicle, our advanced development team is formulating concepts for an evolved version of the rocket,” said Todd May, SLS Program manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. “The work being done today on SLS is a national and collaborative effort. With faculties and students engaged now, we look forward to creative, innovative and more affordable strategies to guide development of the next-generation heavy-lift launch vehicle.”

The SLS is designed to be flexible for launching payloads and spacecraft, including NASA’s Orion Multi-Purpose Crew Vehicle, which will take humans beyond low-Earth orbit. The rocket will enable the agency to achieve its deep-space exploration goals and create new possibilities for scientific discovery.

The period of performance for these grants will be one year with as many as two one-year options.

The first flight test of NASA’s SLS, which will feature a configuration for a 70-metric-ton (77-ton) lift capacity, is scheduled for 2017 from NASA’s Kennedy Space Center in Florida.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 22, 2014

News: Northrop challenges 3DELRR contract award - Northrop Grumman has formally issued a protest against the US Air Force’s decision to award its next-generation ground based radar to competitor Raytheon.   Business: Defense firms prefer GOP, but spread campaign cash between political parties - For every campaign contribution from a major arms manufacturer to a Republican candidate...
 
 

News Briefs October 22, 2014

Military converges on scene of Kansas jet crash Military personnel are investigating at the site in southeast Kansas where an Oklahoma Air National Guard fighter jet crashed after a midair collision with another one during a training exercise. The F-16 crashed Oct. 20 in a pasture about three miles northeast of Moline, an Elk County...
 
 
Courtesy photograph

Upgrades ‘new normal’ for armor in uncertain budget environment

Courtesy photograph The current Paladin is severely under-powered and overweight so its speed of cross-country mobility is pretty restricted. The Paladin Integrated Management program is designed to address a number of these we...
 

 

ISR: A critical capability for 21st century warfare

The progressive adaptations and breakthroughs made in the intelligence, surveillance and reconnaissance arena have changed the way wars are fought, and the way commanders think about the battlespace. “Whether we have airmen exploiting full motion video data or serving downrange in the (Central Command) area of responsibility, these individuals make up an enterprise of 30,000...
 
 

Lockheed Martin teams with Roketsan of Turkey on new standoff missile for F-35

Roketsan and Lockheed Martin signed a teaming agreement Oct. 22 for collaboration on the SOM-J, a new generation air-to-surface Standoff Cruise Missile for the F-35 Lightning II. The SOM system is an autonomous, long-range, low-observable, all-weather, precision air-to-surface cruise missile. The SOM-J variant is tailored for internal carriage on the F-35 aircraft. The companies will...
 
 

Army Operating Concept expands definition of combined arms

The Army Operating Concept, published Oct. 7, expands the idea of joint combined-arms operations to include intergovernmental and special operations capabilities, said Gen. Herbert R. McMaster Jr. The new concept includes prevention and shaping operations at the strategic level across domains that include maritime, air, space and cyberspace, he said. It’s a “shift in emphasis,”...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>