Tech

January 18, 2013

‘Gliding’ to space: A novel means of launching space satellites

Early artist rendering of the Towed Glider Air-Launch Concept, showing the towed glider following rocket launch. A notional tow aircraft is seen clearing the launch area.

NASA’s Dryden Flight Research Center is developing a novel rocket-launching technique called the Towed Glider Air-Launch Concept that could significantly reduce the cost and improve the efficiency of sending satellites into orbit.

The idea is to build a relatively inexpensive remotely or optionally piloted glider that will be towed to altitudes approaching 40,000 feet by a large transport aircraft. The glider will carry a booster rocket capable of launching payloads into low Earth orbit.

Engineers continue working trade-offs with launching the rocket either with the glider still in tow, or following release from the tow aircraft. Either way, after the rocket has launched, the glider will return independently of the tow aircraft to its base to be used again.

Gerald Budd, a NASA Dryden business development and towed glider project manager, displayed a 24-foot wingspan, twin fuselage proof-of-concept model of the glider that was constructed in NASA Dryden’s model shop during a presentation at the Academy of Model Aeronauticsí 15th Annual Expo in Ontario, Calif., in mid-January. The model will fly later this year, towed aloft by one of Drydenís small DROID ñ for Dryden Remotely Operated Integrated Drone ñ unmanned aircraft.

Recent feasibility analyses done by independent contractors indicate that a performance gain of up to 40 percent may be realized by use of Budd’s towed-glider technique over vertical launch of a similar-sized rocket from the ground.

Early artist rendering shows the concept of operations of the Towed Glider Air-Launch Concept, beginning with the aero-tow of the glider carrying a rocket booster, launching the rocket, then returning to land independently of the tow aircraft.

Additionally, air launch of rockets has the potential to lower the cost of placing payloads to orbit through operational efficiencies that are simply not available through vertical ground launch, Budd explained. Cost savings may be as much as 25 percent, based on recent Defense Advanced Research Projects Agency studies.

Historically, air-launched rockets have been carried and dropped from underneath modified, existing aircraft, such as Orbital Sciences’ Pegasus rockets that are launched from the firm’s modified L-1011 “Stargazer” launch aircraft. Currently, a huge new custom-built carrier aircraft is under construction by Stratolaunch Systems, Inc.

Budd maintains the Towed Glider Air Launch Concept has the potential to realize the operational flexibility of a custom airplane, but without the price tag.

ìItís a real-estate problem,î said Budd. ìYouíre limited in what you can fit underneath an existing aircraft. Launching off the top of a carrier aircraft is problematic from a safety perspective. Our approach allows for significant payloads to be carried aloft and launched from a purpose-built custom aircraft that is less expensive because of the simplicity of the airframe, having no propulsion system (engines, fuel, etc.), on board,î Budd said.

This initial research and development effort is being funded internally by NASA Dryden at Edwards Air Force Base in California, and by NASAís Office of the Chief Technologist. Potential Department of Defense and industry partnerships are being explored.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 1, 2014

News: Military downsizing leaves U.S. too weak to counter global threats, panel finds - An independent panel appointed by the Pentagon and Congress said July 31 that President Obama’s strategy for sizing the armed services is too weak for today’s global threats. Defense industry funds flow to contenders for key House chairmanships - Four of the top...
 
 

News Briefs August 1, 2014

China allows foreign reporters at news conference Foreign reporters are being allowed to attend China’s Defense Ministry briefings for the first time, marking a small milestone in the increasingly confident Chinese military’s efforts to project a more transparent image. Restrictions still apply and there is no sign of an improvement in the generally paltry amount...
 
 
Army photograph by John Andrew Hamilton

Rapid Equipping Force, PEO Soldier test targeting device at White Sands Missile Range

Army photograph by John Andrew Hamilton SFC Justin Rotti, a combat developer from the Training and Doctrine Command Fire Cell, Fires Center of Excellence, uses a developmental hand held precision targeting device during a test ...
 

 

NASA awards modification for geophysics, geodynamics, space geodesy support contract

NASA has awarded a modification to Stinger Ghaffarian Technologies Inc. of Greenbelt, Md. to continuing working the the Geophysics, Geodynamics and Space Geodesy Support Services contract. The maximum ordering value of the GGSG contract will increase to $76.8 million. The previous amount was $49.5 million. The increase in the maximum ordering value of the contract...
 
 
boeing-japan

Boeing, All Nippon Airways finalize order for 40 wide-body airplanes

  Boeing and All Nippon Airways July 31 finalized an order for 40 widebody airplanes – 20 777-9Xs, 14 787-9 Dreamliners and six 777-300ERs (Extended Range) – as part of the airline’s strategic long-haul fleet ren...
 
 

Excalibur Ib enters full rate production, receives $52 million award

TUCSON, Ariz., July 31, 2014 /PRNewswire/ — Raytheon’s Excalibur Ib precision guided projectile has entered full rate production. U.S. Army approval of FRP completes Excalibur Ib’s low rate initial production phase. †Additionally, the U.S. Army has awarded Raytheon $52 million for continued Excalibur Ib production. “The full rate production decision is the culmination ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>