Tech

January 18, 2013

‘Gliding’ to space: A novel means of launching space satellites

Early artist rendering of the Towed Glider Air-Launch Concept, showing the towed glider following rocket launch. A notional tow aircraft is seen clearing the launch area.

NASA’s Dryden Flight Research Center is developing a novel rocket-launching technique called the Towed Glider Air-Launch Concept that could significantly reduce the cost and improve the efficiency of sending satellites into orbit.

The idea is to build a relatively inexpensive remotely or optionally piloted glider that will be towed to altitudes approaching 40,000 feet by a large transport aircraft. The glider will carry a booster rocket capable of launching payloads into low Earth orbit.

Engineers continue working trade-offs with launching the rocket either with the glider still in tow, or following release from the tow aircraft. Either way, after the rocket has launched, the glider will return independently of the tow aircraft to its base to be used again.

Gerald Budd, a NASA Dryden business development and towed glider project manager, displayed a 24-foot wingspan, twin fuselage proof-of-concept model of the glider that was constructed in NASA Dryden’s model shop during a presentation at the Academy of Model Aeronauticsí 15th Annual Expo in Ontario, Calif., in mid-January. The model will fly later this year, towed aloft by one of Drydenís small DROID ñ for Dryden Remotely Operated Integrated Drone ñ unmanned aircraft.

Recent feasibility analyses done by independent contractors indicate that a performance gain of up to 40 percent may be realized by use of Budd’s towed-glider technique over vertical launch of a similar-sized rocket from the ground.

Early artist rendering shows the concept of operations of the Towed Glider Air-Launch Concept, beginning with the aero-tow of the glider carrying a rocket booster, launching the rocket, then returning to land independently of the tow aircraft.

Additionally, air launch of rockets has the potential to lower the cost of placing payloads to orbit through operational efficiencies that are simply not available through vertical ground launch, Budd explained. Cost savings may be as much as 25 percent, based on recent Defense Advanced Research Projects Agency studies.

Historically, air-launched rockets have been carried and dropped from underneath modified, existing aircraft, such as Orbital Sciences’ Pegasus rockets that are launched from the firm’s modified L-1011 “Stargazer” launch aircraft. Currently, a huge new custom-built carrier aircraft is under construction by Stratolaunch Systems, Inc.

Budd maintains the Towed Glider Air Launch Concept has the potential to realize the operational flexibility of a custom airplane, but without the price tag.

ìItís a real-estate problem,î said Budd. ìYouíre limited in what you can fit underneath an existing aircraft. Launching off the top of a carrier aircraft is problematic from a safety perspective. Our approach allows for significant payloads to be carried aloft and launched from a purpose-built custom aircraft that is less expensive because of the simplicity of the airframe, having no propulsion system (engines, fuel, etc.), on board,î Budd said.

This initial research and development effort is being funded internally by NASA Dryden at Edwards Air Force Base in California, and by NASAís Office of the Chief Technologist. Potential Department of Defense and industry partnerships are being explored.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins sixth year of airborne Antarctic ice change study

NASA photograph by Michael Studinger NASA’s DC-8 flying laboratory is shown in its parking spot on the ramp at the Aeropuerto Presidente Carlos Ibáñez del Campo in Punta Arenas, Chile, after its transit flight from NASA...
 
 
NASA photograph by Patrick Rogers

Scientific balloon launch highlights NASA exhibit at Balloon Fiesta

NASA photograph by Jay Levine Magdi Said, technology manager for NASA’s Scientific Balloon Program office at NASA’s Wallops Flight Facility, explains elements of NASA’s use of science balloons.   A live t...
 
 
NASA photograph by John Sonntag

Preparing for Antarctic flights in California desert

NASA photograph by John Sonntag The constellation Ursa Major looms over a GPS-equipped survey vehicle and a ground station to its left at El Mirage Dry Lake. By comparing elevation readings from both GPS sources, researchers ca...
 

 
NASA photograph by Tom Tschida

NASA-pioneered Automatic Ground-Collision Avoidance System operational

NASA photograph by Jim Ross The U.S. Air Force’s F-16D Automatic Collision Avoidance Technology (ACAT) test aircraft banks over NASA’s Dryden (now Armstrong) Flight Research Center during a March 2009 flight.  ...
 
 
USF/WHOI/MBARI/NASA image

U.S. initiates prototype system to gauge national marine biodiversity

USF/WHOI/MBARI/NASA image NASA satellite data of the marine environment will be used in prototype marine biodiversity observation networks to be established in four U.S. locations, including the Florida Keys, pictured here. The...
 
 
NASA photograph by David C. Bowman

NASA helicopter test a smashing success

NASA photograph by David C. Bowman Technicians at NASA Langley pulled a helicopter 30 feet into the air before dropping it to test crashworthy systems.   The successful crash test of a former Marine helicopter could help l...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>