Space

January 23, 2013

Despite smaller budget, Air Force seeks to protect satellites

Tags:
Cheryl Pellerin
American Forces Press Service

Despite tremendous budget uncertainty and a shrinking bottom line, the commander of the Air Force Space Command said that he will do his best to protect all of the Air Force’s satellite constellations.

Speaking with reporters at a recent meeting of the Defense Writers Group, Air Force Gen. William L. Shelton called the range of U.S. satellites a “foundational” capability.

“It doesn’t matter what size the United States military becomes, we count on space and cyber capabilities to underpin the force, to enable the way we fight today, to give us the capabilities we need globally,” the general said.

“You can’t say, ‘Well, I’ll just have one less GPS satellite or one less advanced [extremely high frequency] satellite or one less [space-based radar] satellite,'” he added. “You can’t create holes in the constellation and still have global capability.”

Shelton said that despite fiscal uncertainty, Air Force Space Command seeks to answer growing threats from nations such as North Korea and China in the space domain and modify its satellite architecture in concert with emerging threats.

The North Koreans have tried several times to reach orbit and succeeded Dec. 11, according to North American Aerospace Defense Command officials, and Shelton said that tells the United States two things.

“One is that they can get to orbit now, but if they can get to orbit, they can also launch an [intercontinental ballistic missile]. … That gives us lots of concerns for lots of reasons,” the general said.

“What they would do in space is not as concerning right now, because they are very immature in their space program. … [But] others around the world are very mature and have developed things that we know would be deleterious to our efforts in space,” Shelton added, including China in that equation.

In January 2007, China launched with a multistage solid-fuel missile from the Xichang Satellite Launch Center in southwestern China to destroy one of its own Fengyun-series weather satellites.

“Without talking about intelligence matters, I think it’s safe to say that the Chinese didn’t conduct the 2007 test and just quit,” Shelton said. “They conducted another test in 2009 that, even though it was called an antiballistic missile test, certainly had [anti-satellite]-like ramifications. So I think it’s safe to say that they continue in their efforts.”

To examine its satellite architecture, Shelton said Air Force Space Command is conducting studies to “look at different ideas.”

The advanced extremely high-frequency system, or AEHF, is the next-generation military strategic and tactical relay system for delivering protected communications to U.S. forces and several allies worldwide.

When it’s fully operational, the system will consist of four crosslinked satellites in geosynchronous earth orbit, a ground mission-control center and user terminals. AEHF-1 was launched in August 2010 and AEHF-2 last May. AEHF-3 is expected to launch this fall and AEHF-4 sometime in 2017.

AEHF will provide connectivity for land, air and naval warfare, special operations, strategic nuclear operations, strategic defense, theater missile defense, and space operations and intelligence.

“If you could take the two payloads on that satellite, the tactical payload and strategic payload, and separate them onto different hosted platforms, or [make] the strategic platform a hardened, survivable platform and the tactical platform maybe not quite so hardened, … that’s certainly a path we’re studying, seeing what might be most cost-efficient,” Shelton explained.

For the Air Force’s Space-based Infrared Systems, or SBIRS, program, a critical missile defense and warning capability, the architecture consists of a mix of geosynchronous Earth orbit or GEO satellites, payloads in highly elliptical Earth orbit, and ground hardware and software.

In missile warning, Air Force Space Command is looking at the wide-field-of-view or scanning sensor on GEO satellites and trying to determine whether or not it can host that on a platform other than SBIRS, the general said.

“It’s important to note that for both advanced EHF and SBIRS, the die is cast through about 2025″ because of contract commitments, Shelton said.

“I think it’s safe to say in both of those cases, depending on how much money we have in 2015, we’ll look to continue the study efforts to determine cost efficiency,” he said.

The general said studies are ongoing for a weather satellite that will be a follow-on to the Defense Meteorological Satellite Program managed by the Space and Missile Systems Center at Los Angeles Air Force Base in California.

“We’re in the midst of [analyzing] alternatives right now to develop a follow-on weather satellite that will be in the mid-2020 kind of time frame, but looking at making that probably a smaller satellite and much less expensive,” Shelton said.

Studies also continue for the follow-on to the Space-based Surveillance System, part of the U.S. Strategic Command’s Space Surveillance Network and operated by the 1st Satellite Operations Squadron at Schriever Air Force Base in Colorado.

The SBSS satellite is the only space-based sensor in the network, operating 24 hours a day, seven days a week to collect about man-made space objects.

“We firmly believe that space-based space surveillance is something we need to continue,” Shelton said. “The question is exactly what should that satellite look like?”

The Global Positioning System, a constellation of more than 24 dual-use satellites that provides positioning, velocity and timing to military and civilian users around the world, is a joint service effort directed by the Air Force.

“We’re doing great on GPS,” Shelton said, adding that the Air Force may look at an “augmentation, navigation-only kind of satellite that doesn’t have the nuclear-detonation-detection payload on it, so we could have a fairly inexpensive satellite that addresses some lack of coverage in urban canyons, for example.”

The general said he also will try very hard to protect funding for the Joint Space Operations Center Mission System.

JSPOC includes personnel from all four services and from the United Kingdom, Australia and Canada, along with facilities and equipment needed to give U.S. Strategic Command’s Joint Functional Component Command for Space the ability to plan and execute command and control of worldwide space forces.

An Air Force tactical air control party candidate studies his GPS device before a call-for-fire exercise on the range at Eglin Air Force Base, Fla., Oct. 20, 2011. Candidates used a GPS system to target the exact location of a threat.

“The JSPOC Mission System out at Vandenberg [Air Force Base in California] underpins all space operations,” Shelton said. “Everything we do starts with what happens at the JSPOC.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s futureĀ - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>