Space

January 25, 2013

Mars Science Lab prepares to drill for samples

The right Mast Camera (Mastcam) of NASA’s Curiosity Mars rover provided this view of the lower stratigraphy at “Yellowknife Bay” inside Gale Crater on Mars. The rectangle superimposed on the left image shows the location of the enlarged portion on the right. In the right image, white arrows point to veins (including some under the overhang), and black arrows point to concretions (small spherical concentrations of minerals). Both veins and concretions strongly suggest precipitation of minerals from water. The scale bar in the left image is 19.7 inches long. The scale bar in the right image is 3.9 inches long.

After a successful first use of the Mars Dusting Tool, Curiosity is ready to start drilling into the surface of Mars. This has never been done before.

“Drilling into a rock to collect a sample will be this mission’s most challenging activity since the landing. It has never been done on Mars,” said Mars Science Laboratory project manager Richard Cook of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“The drill hardware interacts energetically with Martian material we don’t control. We won’t be surprised if some steps in the process don’t go exactly as planned the first time through.

Curiosity first will gather powdered samples from inside the rock and use those to scrub the drill. Then the rover will drill and ingest more samples from this rock, which it will analyze for information about its mineral and chemical composition.

The chosen rock is in an area where Curiosity’s Mast Camera (Mastcam) and other cameras have revealed diverse unexpected features, including veins, nodules, cross-bedded layering, a lustrous pebble embedded in sandstone, and possibly some holes in the ground.

The rock chosen for drilling is called “John Klein” in tribute to former Mars Science Laboratory deputy project manager John W. Klein, who died in 2011. His leadership skill played a crucial role in making Curiosity a reality,” said Cook.

The target is on flat-lying bedrock within a shallow depression called “Yellowknife Bay.” The terrain in this area differs from that of the landing site, a dry streambed about a third of a mile (about 500 meters) to the west. Curiosity’s science team decided to look there for a first drilling target because orbital observations showed fractured ground that cools more slowly each night than nearby terrain types do.

The orbital signal drew us here, but what we found when we arrived has been a great surprise,” said Mars Science Laboratory project scientist John Grotzinger, of the California Institute of Technology in Pasadena. “This area had a different type of wet environment than the streambed where we landed, maybe a few different types of wet environments.”

This line of evidence comes from inspection of light-toned veins with Curiosity’s laser-pulsing Chemistry and Camera (ChemCam) instrument, which found elevated levels of calcium, sulfur and hydrogen.

These veins are likely composed of hydrated calcium sulfate, such as bassinite or gypsum,” said ChemCam team member Nicolas Mangold of the Laboratoire de Planetologie et Geodynamique de Nantes in France. “On Earth, forming veins like these requires water circulating in fractures.

Researchers have used the rover’s Mars Hand Lens Imager (MAHLI) to examine sedimentary rocks in the area. Some are sandstone, with grains up to about peppercorn size. One grain has an interesting gleam and bud-like shape that have brought it Internet buzz as a “Martian flower.” Other rocks nearby are siltstone, with grains finer than powdered sugar. These differ significantly from pebbly conglomerate rocks in the landing area.

These are sedimentary rocks, telling us Mars had environments actively depositing material here,” said MAHLI deputy principal investigator Aileen Yingst of the Planetary Science Institute in Tucson, Ariz. “The different grain sizes tell us about different transport conditions.”

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 7, 2015

News: F-35 loses dogfight to fighter jet from 1980s – A new report alleges that an F-35A was defeated by the very aircraft it is meant to replace.   Business: South Korea selects Airbus for $1.33 billion tanker contract – European aerospace giant Airbus won a $1.33 billion deal June 30 to supply air refueling...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
Untitled-2

Tactical reconnaissance vehicle project eyes hoverbike for defense

The U.S. Army Research Laboratory, or ARL, has been exploring the tactical reconnaissance vehicle, or TRV, concept for nearly nine months and is evaluating the hoverbike technology as a way to get Soldiers away from ground thre...
 

 
Air Force photograph by SSgt. William Banton

Upgraded AWACS platform tested at Northern Edge

Air Force photograph by SSgt. William Banton Maintenance crew members prepare an E-3G Sentry (AWACS) for takeoff during exercise Northern Edge June 25, 2015. Roughly 6,000 airmen, soldiers, sailors, Marines and Coast Guardsmen ...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 
 
Air Force photograph by SSgt. Marleah Robertson

First Marine graduates Air Force’s F-35 intelligence course

Air Force photograph by SSgt. Marleah Robertson Marine Corps 1st Lt. Samuel Winsted, an F-35B Lightning II intelligence officer, provides a mock intelligence briefing to two instructors during the F-35 Intelligence Formal Train...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>