Space

January 25, 2013

World’s most powerful engine blazes path for Space Launch System advanced propulsion

To help develop the nation¹s future heavy lift rocket, NASA resurrected the world’s most powerful rocket engine ever flown – the mighty F-1 that powered the Saturn V rocket – and test fired it’s gas generator today at the Marshall Space Flight Center in Huntsville, Ala.

NASA engineers ran the gas generator at the Marshall Center¹s Test Stand 116. The test is part of a series that will push the gas generator to limits beyond prior Apollo-era tests. Modern instruments on the test stand measured performance and combustion properties to allow engineers a starting point for creating a new, more affordable, advanced propulsion system.

“Our young engineers are getting their hands dirty by working with one of NASA’s most famous engines,” said Tom Williams, director of the Propulsion Systems Department in Marshall Engineering Directorate. “These tests are only the beginning. As SLS research activities progress, these young NASA engineers will continue work with our industry partners to test and evaluate the benefits of using a powerful propulsion system fueled by liquid oxygen and rocket grade kerosene, a propellant we haven’t tested with in some time.”

The gas generator tested at Marshall today is a key F-1 rocket component that burns liquid oxygen and kerosene and is the part of the engine responsible for supplying power to drive the giant turbopump. The gas generator is often one of the first pieces designed on a new engine because it is a key part for determining the engine¹s size, which is a factor in the engine’s power and ability to lift heavy payloads and send them to space.

NASA¹s Space Launch System will provide an entirely new capability for human exploration beyond low Earth orbit. The initial 77-ton SLS configuration will use two 5-segment solid rocket boosters similar to the boosters that helped power the space shuttle to orbit. The evolved 143-ton SLS vehicle will require an advanced booster with more thrust than any existing U.S. liquid- or solid-fueled boosters. Last year, NASA awarded three contracts aimed at improving the affordability, reliability and performance of the rocket¹s advanced booster, including one focused on the F-1 engine.

“It’s important that our workforce get hands on experience on systems like the F-1 gas generator as it helps make them smart buyers, and good stewards of what we procure from industry,” said Chris Crumbly, manager of the SLS Advanced Development Office at the Marshall Center. “As we look to

the future advanced boosters for SLS we are eager to see what our partners in industry can provide as far as a more powerful and affordable solution.”

 




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>