Space

January 25, 2013

World’s most powerful engine blazes path for Space Launch System advanced propulsion

To help develop the nation¹s future heavy lift rocket, NASA resurrected the world’s most powerful rocket engine ever flown – the mighty F-1 that powered the Saturn V rocket – and test fired it’s gas generator today at the Marshall Space Flight Center in Huntsville, Ala.

NASA engineers ran the gas generator at the Marshall Center¹s Test Stand 116. The test is part of a series that will push the gas generator to limits beyond prior Apollo-era tests. Modern instruments on the test stand measured performance and combustion properties to allow engineers a starting point for creating a new, more affordable, advanced propulsion system.

“Our young engineers are getting their hands dirty by working with one of NASA’s most famous engines,” said Tom Williams, director of the Propulsion Systems Department in Marshall Engineering Directorate. “These tests are only the beginning. As SLS research activities progress, these young NASA engineers will continue work with our industry partners to test and evaluate the benefits of using a powerful propulsion system fueled by liquid oxygen and rocket grade kerosene, a propellant we haven’t tested with in some time.”

The gas generator tested at Marshall today is a key F-1 rocket component that burns liquid oxygen and kerosene and is the part of the engine responsible for supplying power to drive the giant turbopump. The gas generator is often one of the first pieces designed on a new engine because it is a key part for determining the engine¹s size, which is a factor in the engine’s power and ability to lift heavy payloads and send them to space.

NASA¹s Space Launch System will provide an entirely new capability for human exploration beyond low Earth orbit. The initial 77-ton SLS configuration will use two 5-segment solid rocket boosters similar to the boosters that helped power the space shuttle to orbit. The evolved 143-ton SLS vehicle will require an advanced booster with more thrust than any existing U.S. liquid- or solid-fueled boosters. Last year, NASA awarded three contracts aimed at improving the affordability, reliability and performance of the rocket¹s advanced booster, including one focused on the F-1 engine.

“It’s important that our workforce get hands on experience on systems like the F-1 gas generator as it helps make them smart buyers, and good stewards of what we procure from industry,” said Chris Crumbly, manager of the SLS Advanced Development Office at the Marshall Center. “As we look to

the future advanced boosters for SLS we are eager to see what our partners in industry can provide as far as a more powerful and affordable solution.”

 




All of this week's top headlines to your email every Friday.


 
 

 
ISS-soyuz

Soyuz Heads to ISS with new crew, return transportation for one-year mission team

WASHINGTON, Sept. 2, 2015 /PRNewswire/ Three crew members representing Russia, Denmark and Kazakhstan have launched to the International Space Station to provide a new ride home for the station’s one-year crew and continu...
 
 
LMOrion1

Orion arrives in Colorado

The Orion crew module flown 3,600 miles into space during Exploration Flight Test-1 has arrived to the Lockheed Martin Space Systems Company headquarters in Littleton, Colorado. While in Colorado, engineers will perform final d...
 
 
ULAlaunch

United Launch Alliance successfully launches U.S. Navy’s MUOS-4

A United Launch Alliance Atlas V rocket carrying the fourth Mobile User Objective System satellite for the U.S. Navy launched from Space Launch Complex-41 at 6:18 a.m., EDT, Sept. 2 from Cape Canaveral Air Force Station, Fla. T...
 

 
LM-MUOS

U.S. Navy, Lockheed Martin ready to launch MUOS-4 Aug. 31

The U.S. Navy and Lockheed Martin are ready to launch the fourth Mobile User Objective System secure communications satellite, MUOS-4, from Cape Canaveral Air Force Station, Fla., Aug. 31 aboard a United Launch Alliance Atlas V...
 
 

NASA seeks proposals for extreme environment solar arrays

NASA’s space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there...
 
 

NASA awards contract for construction of new mission launch command center

NASA has awarded a contract to Harkins Contracting Inc. of Salisbury, Maryland, for the construction of a new Mission Launch Command Center at the agency’s Wallops Flight Facility in Wallops Island, Va. The new 14,174 square-foot facility will serve as the hub for interfacing with and controlling rockets, their payloads and associated launch pad support...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>